Skip to main content
Log in

Regressive rate-distortion trade-off with weighted entropy coding for HEVC encoding

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

High-Efficiency Video Coding (HEVC) is the standard employed for the subsequent compressing of the video without degrading the quality of the image. HEVC renders effective performance compared to the existing compression standards as the encoding time is minimal. With the concern for quality and video compression, this paper proposes a modified version for HEVC encoding using the Ordered Tree-based Hex-Octagon based block Search and Rate-Distortion trade-off (OrTHO-Search-based RD) for motion estimation and weighted Context-Adaptive Binary Arithmetic Coding (CABAC). The proposed OrTHO-Search-based RD-dependent HEVC renders a good-quality video after compression with half the compression standard when compared with the other existing compression standards. In the motion estimation block, the OrTHO-Search is employed with a new RD trade-off in such a way that the Conditional Autoregressive Value at Risk concept modifies the existing RD trade-off measure. The bit rates of the proposed method are reduced with effective coding. The experimentation and analysis of the methods are performed using four videos from CIPR SIF Sequences and one video from Xiph.org Video Test Media datasets and the analysis based on Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), reveals that the proposed method acquired the maximal PSNR of 45.1132 dB, maximal SSIM of 0. 9918, and minimal computational time of 0.2135 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Stankowski, J., Karwowski, D., Grajek, T., Wegner, K., Siast, J., Klimaszewski, K., Stankiewicz, O., Domański, M.: Bitrate distribution of syntax elements in the HEVC encoded video. In: Inter. Conf. Sig. Electronic Syst. (ICSES) (2014)

  2. Wagdarikar, A.M.U., Senapati, R.K.: Multiobjective cost function based digital video watermarking technique. MultimedRes 2(1), 23–36 (2019)

    Google Scholar 

  3. Wagdarikar, A.M.U., Senapati, R.K.: Haar wavelet transform and multiobjective cost function for video watermarking. Multimed Res 2(4), 33–42 (2019)

    Google Scholar 

  4. Puttaswamy, M.R.: Improved deer hunting optimization algorithm for video based salient object detection. Multimed. Res. 3(3), 1–11 (2020)

  5. Lee, T.-K., Chan, Y.-L., Siu, W.-C.: Adaptive Search Range for HEVC Motion Estimation based on Depth Information. IEEE Trans. Circ. Syst. Video Technol. 27(10), 2216–2230 (2017)

    Article  Google Scholar 

  6. Ugur, K., Andersson, K., Fuldseth, A., Bjøntegaard, G., Endresen, L.P., Lainema, J., Hallapuro, A., Ridge, J., Rusanovskyy, D., Zhang, C., Norkin, A., Priddle, C., Rusert, T., Samuelsson, J., Sjoberg, R., Wu, Z.: High performance, low complexity video coding and the emerging HEVC standard. IEEE Trans. Circ. Syst. Video Technol. 20(12), 1688–1697 (2010)

    Article  Google Scholar 

  7. Jiang, M., Li, S., Puria, N.L.A., Chenb, X., Luthra, A.: Video coding using the H264/MPEG-4 AVC compression standard. Signal Process. Image Commun. 19(9), 793–849 (2004)

    Article  Google Scholar 

  8. Choi, K., Jang, E.S.: Early TU decision method for fast video encoding in high efficiency video coding. Electron. Lett. 48(12), 689–691 (2012)

    Article  Google Scholar 

  9. Wiegand, T., Ohm, J.R., Sullivan, G.J., Han, W.J., Joshi, R., Tan, T.K., Ugur, K.: Special section on the joint call for proposals on high efficiency video coding (HEVC) standardization. IEEE Trans. Circ. Syst. Video Technol. 20(12), 1661–1666 (2010)

    Article  Google Scholar 

  10. Mallikarachchi, T., Talagala, D.S., Arachchi, H.K., Fernando, A.: Content-adaptive feature-based CU size prediction for fast low-delay video encoding in HEVC. IEEE Trans. Circ. Syst. Video Technol. 28(3), 693–705 (2018)

    Article  Google Scholar 

  11. Peixoto, E., Shanableh, T., Izquierdo, E.: H.264/AVC to HEVC video transcoder based on dynamic thresholding and content modeling. IEEE Trans. Circ. Syst. Video Technol. 24(1), 99–112 (2014)

    Article  Google Scholar 

  12. Tai, K.-H., Hsieh, M.-Y., Chen, M.-J., Chen, C.-Y., Yeh, C.-H.: A fast HEVC encoding method using depth information of collocated CUs and RD cost characteristics of PU modes. IEEE Trans. Broadcast. 63(4), 680–692 (2017)

    Article  Google Scholar 

  13. Zhu, S., Zhang, S., Ran, C.: An improved inter-frame prediction algorithm for video coding based on fractal and H.264. IEEE Access 5, 18715–18724 (2017)

    Article  Google Scholar 

  14. Acharya, D.B., Zhang, H.: Community detection clustering via gumbelsoftmax. SN Comput. Sci. 1(5), 1–11 (2020)

    Article  Google Scholar 

  15. George, A., Rajakumar, B.R., Suresh, B.S.: Markov random field based image restoration with aid of local and global features. Int. J. Comput. Appl. 48(8), 23–28 (2012)

    Google Scholar 

  16. Sairam, Y.N., Ma, N and Sinha, N.: A novel partial prediction algorithm for fast 4 × 4 Intra prediction mode decision in H.264/AVC. In: Proceedings of Data Compression Conference, IEEE, pp. 232–234 (2008)

  17. Engle, R.F., Manganelli, S.: CAViaR: conditional autoregressive value at risk by regression quantiles. J. Bus. Econ. Stat. 22(4), 367–381 (2004)

    Article  MathSciNet  Google Scholar 

  18. Jiang, X., He, P., Sun, T., Xie, F., Wang, S.: Detection of double compression with the same coding parameters based on quality degradation mechanism analysis. IEEE Trans. Inf. Forensic Secur. 13(1), 170–185 (2018)

    Article  Google Scholar 

  19. Chen, K., Sun, J., Duan, Y., Guo, Z.: A novel wavefront-based high parallel solution for HEVC encoding. IEEE Trans. Circ. Syst. Video Technol. 26(1), 181–194 (2016)

    Article  Google Scholar 

  20. Fan, R., Zhang, Y., Li, B.: Motion classification-based fast motion estimation for high efficiency video coding. IEEE Trans. Multimed. 19(5), 893–907 (2017)

    Article  Google Scholar 

  21. Heindel, A., Wige, E., Kaup, A.: Low-complexity enhancement layer compression for scalable lossless video coding based on HEVC. IEEE Trans. Circ. Syst. Video Technol. 27(8), 1749–1760 (2017)

    Article  Google Scholar 

  22. Asif, M., Ahmad, M.B., Taj, I.A., Tahir, M.: A generalized multi-layer framework for video coding to select prediction parameters. IEEE Access 6, 25277–25291 (2018)

    Article  Google Scholar 

  23. Acharya, D.B and Zhang, H.: Feature selection and extraction for graph neural networks. In: Proceed. 2020 ACM Southeast Conf., Tampa FL USA, pp. 252–255 (2020)

  24. Marzuki, I., Lee, J., Sim, D.: Optimal CTU-level rate control model for HEVC based on deep convolutional features. IEEE Access 8, 165670–165682 (2020)

    Article  Google Scholar 

  25. Wang, M., Xie, W., Xiong, J., Wang, D., Qin, J.: Joint optimization of transform and quantization for high efficiency video coding. IEEE Access 7, 62534–62544 (2019)

    Article  Google Scholar 

  26. He, G., Zhou, D., Fei, W., Chen, Z., Zhou, J., Goto, S.: High-performance H264/AVC0s. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22(1), 76–89 (2014)

    Article  Google Scholar 

  27. Sullivan, G.J., Ohm, J.R., Han, W., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circ. Syst. Video Technol. 22(12), 1649–1668 (2012)

    Article  Google Scholar 

  28. Chen, M.-J., Wu, Y.-D., Yeh, C.-H., Lin, K.M., Lin, S.D.: Efficient CU and PU decision based on motion information for inter-prediction of HEVC. IEEE Trans. Ind. Inform. (Early Access) 14, 4735–4745 (2018)

    Article  Google Scholar 

  29. Zhu, C., Lin, X., Chau, L.-P.: Hexagon-based search pattern for fast block motion estimation. Trans. Circ. Syst. Video Technol. 12(5), 349–355 (2002)

    Article  Google Scholar 

  30. Marpe, D., Schwarz, H., Wiegand, T.: Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard. IEEE Trans. Circ. Syst. Video Technol. 13(7), 620–636 (2003)

    Article  Google Scholar 

  31. CIPR SIF sequences. http://www.cipr.rpi.edu/resource/sequences/sif.html. Accessed Oct 2017.

  32. Xiph.org Video Test Media dataset. https://media.xiph.org/video/derf/. Accessed on 26 Feb 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anilkumar Chandrashekhar Korishetti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korishetti, A.C., Malemath, V.S. Regressive rate-distortion trade-off with weighted entropy coding for HEVC encoding. J Real-Time Image Proc 18, 2165–2180 (2021). https://doi.org/10.1007/s11554-021-01096-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-021-01096-w

Keywords

Navigation