Skip to main content
Log in

Thermal Nonlocal Advantage of Quantum Coherence in the Two-Site, Triangular, and Tetrahedral Lattices with Heisenberg Interactions

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum correlations are physical resources for quantum information processing. The nonlocal advantage of quantum coherence (NAQC) is a kind of quantum correlation which is stronger than entanglement. We report here methods for enhancing thermal NAQC in the two-site, triangular, and tetrahedral lattices. It is found that for all the considered cases, the NAQC can be noticeably enhanced by introducing the Dzyaloshinsky-Moriya (DM) interaction to two spins and tune the anisotropy of the spin-spin coupling. Besides, the critical temperature below which the thermal NAQC exists can also be noticeably enhanced by introducing the DM interaction. Hence, our results provide a way to achieve NAQC for quantum tasks based on spin lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Berta, M., Christandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659 (2010)

    Article  Google Scholar 

  2. Hu, M.L., Fan, H.: Competition between quantum correlations in the quantum-memory-assisted entropic uncertainty relation. Phys. Rev. A. 87, 022314 (2013)

    Article  ADS  Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Modi, K., Brodutch, A., Cable, H., Paterek, Z., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  5. Ficek, Z., Swain, S.: Quantum Interference and Coherence: Theory and Experiments (Springer Series in Optical Sciences). Springer, Berlin (2005)

    Google Scholar 

  6. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

  7. Streltsov, A., Adesso, G., Plenio, M.B.: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  8. Hu, M.L., Hu, X.Y., Wang, J.C., Peng, Y., Zhang, Y.R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762–764, 1–100 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. Qi, X., Gao, T., Yan, F.: Measuring coherence with entanglement concurrence. J. Phys. A: Math. Theor. 50, 285301 (2017)

  11. Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherenc. Phys. Rev. Lett. 116, 150502 (2016)

  12. Bu, K., Singh, U., Fei, S.M., Pati, A.K., Wu, J.: Maximum relative entropy of coherence: an operational coherence measure. Phys. Rev. Lett. 119, 150405 (2017)

  13. Streltsov, A., Chitambar, E., Rana, S., Bera, M.N., Winter, A., Lewenstein, M.: Entanglement and coherence in quantum state merging. Phys. Rev. Lett. 116, 240405 (2016)

  14. Ma, J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)

  15. Hillery, M.: Coherence as a resource in decision problems: the Deutsch-Jozsa algorithm and a variation. Phys. Rev. A. 93, 012111 (2016)

    Article  ADS  Google Scholar 

  16. Shi, H.L., Liu, S.Y., Wang, X.H., Yang, W.L., Yang, Z.Y., Fan, H.: Coherence depletion in the Grover quantum search algorithm. Phys. Rev. A. 95, 032307 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  17. Yu, C.S.: Quantum coherence via skew information and its polygamy. Phys. Rev. A. 95, 042337 (2017)

    Article  ADS  Google Scholar 

  18. Shi, Y.H., Shi, H.L., Wang, X.H., Hu, M.L., Liu, S.Y., Yang, W.L., Fan, H.: Quantum coherence in a quantum heat engine. J. Phys. A: Math. Theor. 53, 085301 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  19. Bera, M.N., Qureshi, T., Siddiqui, M.A., Pati, A.K.: Duality of quantum coherence and path distinguishability. Phys. Rev. A. 92, 012118 (2015)

    Article  ADS  Google Scholar 

  20. Bagan, E., Bergou, J.A., Cottrell, S.S., Hillery, M.: Relations between coherence and path information. Phys. Rev. Lett. 116, 160406 (2016)

  21. Karpat, G., Çakmak, B., Fanchini, F.F.: Quantum coherence and uncertainty in the anisotropic XY chain. Phys. Rev. B. 90, 104431 (2014)

  22. Chen, J.J., Cui, J., Zhang, Y.R., Fan, H.: Coherence susceptibility as a probe of quantum phase transitions. Phys. Rev. A. 94, 022112 (2016)

    Article  ADS  Google Scholar 

  23. Malvezzi, A.L., Karpat, G., Çakmak, B., Fanchini, F.F., Debarba, T., Vianna, R.O.: Quantum correlations and coherence in spin-1 Heisenberg chains. Phys. Rev. B. 93, 184428 (2016)

  24. Hu, M.L., Gao, Y.Y., Fan, H.: Steered quantum coherence as a signature of quantum phase transitions in spin chains. Phys. Rev. A. 101, 032305 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  25. Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)

  26. Yu, X.D., Zhang, D.J., Liu, C.L., Tong, D.M.: Measure-independent freezing of quantum coherence. Phys. Rev. A. 93, 060303 (2016)

    Article  ADS  Google Scholar 

  27. Zhang, A., Zhang, K., Zhou, L., Zhang, W.: Frozen condition of quantum coherence for atoms on a stationary trajectory. Phys. Rev. Lett. 121, 073602 (2018)

    Article  ADS  Google Scholar 

  28. Hu, M.L., Fan, H.: Evolution equation for quantum coherence. Sci. Rep. 6, 29260 (2016)

  29. Guarnieri, G., Kolář, M., Filip, R.: Steady-state coherences by composite system-bath interactions. Phys. Rev. Lett. 121, 070401 (2018)

    Article  ADS  Google Scholar 

  30. Hu, M., Zhou, W.: Enhancing two-qubit quantum coherence in a correlated dephasing channel. Laser Phys. Lett. 16, 045201 (2019)

    Article  ADS  Google Scholar 

  31. Hu, M.L., Fan, H.: Quantum coherence of multiqubit states in correlated noisy channels. Sci. China-Phys. Mech. Astron. 63, 230322 (2020)

  32. Tan, K.C., Kwon, H., Park, C.Y., Jeong, H.: Unified view of quantum correlations and quantum coherence. Phys. Rev. A. 94, 022329 (2016)

    Article  ADS  Google Scholar 

  33. Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A. 92, 022112 (2015)

    Article  ADS  Google Scholar 

  34. Hu, M.L., Fan, H.: Relative quantum coherence, incompatibility, and quantum correlations of states. Phys. Rev. A. 95, 052106 (2017)

    Article  ADS  Google Scholar 

  35. Hu, X., Milne, A., Zhang, B., Fan, H.: Quantum coherence of steered states. Sci. Rep. 6, 19365 (2015)

  36. Hu, X., Fan, H.: Extracting quantum coherence via steering. Sci. Rep. 6, 34380 (2016)

  37. Wooters, W.K.: Quantum mechanics without probability amplitudes. Found. Phys. 16, 391 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  38. Wooters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. (N.Y.). 191, 363 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  39. Mondal, D., Pramanik, T., Pati, A.K.: Nonlocal advantage of quantum coherence. Phys. Rev. A. 95, 010301 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  40. Hu, M.L., Fan, H.: Nonlocal advantage of quantum coherence in high-dimensional states. Phys. Rev. A. 98, 022312 (2018)

    Article  ADS  Google Scholar 

  41. Hu, M.L., Wang, X.M., Fan, H.: Hierarchy of the nonlocal advantage of quantum coherence and Bell nonlocality. Phys. Rev. A. 98, 032317 (2018)

    Article  ADS  Google Scholar 

  42. Datta, S., Majumdar, A.S.: Sharing of nonlocal advantage of quantum coherence by sequential observers. Phys. Rev. A. 98, 042311 (2018)

    Article  ADS  Google Scholar 

  43. Ding, Z.Y., Yang, H., Yuan, H., Wang, D., Yang, J., Ye, L.: Experimental investigation of the nonlocal advantage of quantum coherence. Phys. Rev. A. 100, 022308 (2019)

    Article  ADS  Google Scholar 

  44. Ming, F., Song, X.K., Ling, J., Ye, L., Wang, D.: Quantification of quantumness in neutrino oscillations. Eur. Phys. J. C. 80, 275 (2020)

    Article  ADS  Google Scholar 

  45. Mondal, D., Kaszlikowski, D.: Complementarity relations between quantum steering criteria. Phys. Rev. A. 98, 052330 (2018)

    Article  ADS  Google Scholar 

  46. Arnesen, M.C., Bose, S., Vedral, V.: Natural thermal and magnetic entanglement in the 1D Heisenberg model. Phys. Rev. Lett. 87, 017901 (2001)

  47. Lagmago, G.K., Starace, A.F.: Anisotropy and magnetic field effects on the entanglement of a two qubit Heisenberg XY chain. Phys. Rev. Lett. 88, 107901 (2002)

  48. Hu, M.L., Tian, D.P.: Effects of impurity on the entanglement of the three-qubit Heisenberg XXX spin chain. Sci. China Ser. G. 50, 208 (2007)

    Article  MATH  Google Scholar 

  49. Werlang, T., Rigolin, G.: Thermal and magnetic quantum discord in Heisenberg models. Phys. Rev. A. 81, 044101 (2010)

    Article  ADS  Google Scholar 

  50. Werlang, T., Trippe, C., Ribeiro, G.A.P., Rigolin, G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)

    Article  ADS  Google Scholar 

  51. Maziero, J., Guzman, H.C., Ćeleri, L.C., Sarandy, M.S., Serra, R.M.: Quantum and classical thermal correlations in the XY spin-1/2 chain. Phys. Rev. A. 82, 012106 (2010)

    Article  ADS  Google Scholar 

  52. Li, Y.C., Lin, H.Q.: Thermal quantum and classical correlations and entanglement in the XY spin model with three-spin interaction. Phys. Rev. A. 83, 052323 (2011)

    Article  ADS  Google Scholar 

  53. Yu, C.S., Yang, S.R., Guo, B.Q.: Total quantum coherence and its applications. Quantum Inf. Process. 15, 3773 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Hu, M.L., Shen, S.Q., Fan, H.: Maximum coherence in the optimal basis. Phys. Rev. A. 96, 052309 (2017)

    Article  ADS  Google Scholar 

  55. Streltsov, A., Kampermann, H., Wölk, S., Gessner, M., Bruß, D.: Maximal coherence and the resource theory of purity. New J. Phys. 20, 053058 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  56. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

  57. Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004)

  58. Hu, M.L., Lian, H.L.: State transfer in intrinsic decoherence spin channels. Eur. Phys. J. D. 55, 711 (2009)

    Article  ADS  Google Scholar 

  59. Yeo, Y.: Teleportation via thermally entangled states of a two-qubit Heisenberg XX chain. Phys. Rev. A. 66, 062312 (2002)

    Article  ADS  Google Scholar 

  60. Du, M.M., Wang, D., Ye, L.: Effect of local noise for achieving nonlocal advantage of quantum coherence. Quantum Inf. Process. 16, 218 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Xie, Y.X., Qin, Z.Y.: Enhancing nonlocal advantage of quantum coherence in correlated quantum channels. Quantum Inf. Process. 19, 375 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  62. Xue, G.H., Qiu, L.: Recovering nonlocal advantage of quantum coherence by weak measurement reversal. Phys. Scr. 95, 025101 (2020)

    Article  ADS  Google Scholar 

  63. Hu, M.L., Zhang, Y.H., Fan, H.: Nonlocal advantage of quantum coherence in a dephasing channel with memory. Chin. Phys. B. 30, 030308 (2021)

    Article  ADS  Google Scholar 

  64. Zhang, G.F.: Thermal entanglement and teleportation in a two-qubit Heisenberg chain with Dzyaloshinski-Moriya anisotropic antisymmetric interaction. Phys. Rev. A. 75, 034304 (2007)

    Article  ADS  Google Scholar 

  65. Hu, M.L.: Disentanglement dynamics of interacting two qubits and two qutrits in an XY spin-chain environment with the Dzyaloshinsky-Moriya interaction. Phys. Lett. A. 374, 3520 (2010)

    Article  ADS  MATH  Google Scholar 

  66. Liu, B.Q., Shao, B., Li, J.G., Zou, J., Wu, L.A.: Quantum and classical correlations in the one-dimensional XY model with Dzyaloshinskii-Moriya interaction. Phys. Rev. A. 83, 052112 (2011)

    Article  ADS  Google Scholar 

  67. Xie, Y.X., Liu, J., Ma. H.: Enhancing the trace norm and Bures norm measurement-induced nonlocality in the Heisenberg XYZ model. Int. J. Theor. Phys. 55, 4866 (2016).

  68. Yang, Y.Y., Sun, W.Y., Shi, W.N., Ming, F., Wang, D., Ye, L.: Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii-Moriya interactions. Front. Phys. 14, 31601 (2019)

Download references

Acknowledgments

Y.-X. Xie is supported by the National Natural Science Foundation of China (Grant No. 11675129).

Funding

Y.-X. Xie is supported by the National Natural Science Foundation of China (Grant No. 11675129).

Author information

Authors and Affiliations

Authors

Contributions

Y.-X. Xie contributed the idea and wrote the manuscript, Y.-X. Xie and Y.-H. Zhang performed the calculations. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yu-Xia Xie.

Ethics declarations

Animal Research (Ethics)

Not applicable.

Consent to Participate (Ethics)

Not applicable.

Competing Interests

The authors declare that they have no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, YX., Zhang, YH. Thermal Nonlocal Advantage of Quantum Coherence in the Two-Site, Triangular, and Tetrahedral Lattices with Heisenberg Interactions. Int J Theor Phys 60, 1813–1824 (2021). https://doi.org/10.1007/s10773-021-04800-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04800-5

Keywords

Navigation