Skip to main content
Log in

Identification and Heterologous Production of a Lipase from Geobacillus kaustophilus DSM 7263T and Tailoring Its N-Terminal by a His-Tag Epitope

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Lipases are versatile biocatalysts with many biotechnological applications and the necessity of screening, production and characterization of new lipases from diverse microbial strains to meet industrial needs is constantly emerging. In this study, the lipase gene (gklip) from a thermophilic bacterium, Geobacillus kaustophilus DSM 7263 T was cloned into the pET28a ( +) vector with N-terminal 6xHis-tag. The recombinant gklip gene was heterologously expressed in host E. coli BL21 (DE3) cells and purified by Ni–NTA affinity chromatography. Histidine tag was removed from the purified 6xHistag-Gklip enzyme with thrombin enzyme and the molecular mass was determined to be approximately 43 kDa by SDS-PAGE. Gklip showed optimal activity at pH 8.0 and 50 °C. The specific hydrolytic activities against substrates were significantly increased by the removal of the His-tag. Km and kcat values of Gklip against p-nitrophenyl palmitate (pNPP, 4-nitrophenyl palmitate) as the target substrate were found to be as 1.22 mM and 417.1 min−1, respectively. Removing His-tag changed the substrate preference of the enzyme leading to maximum lipolytic activity towards C10 and C12 lipids. Similarly, the activity against coconut oil that containing 62% medium-chain fatty acids was significantly higher than other oils. Furthermore, preservation of activity in the presence of inhibitors, organic solvents support the effect of lid structure of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Melani NB, Tambourgi EB, Silveira E (2020) Lipases: From Production to Applications. Sep Purif Rev 49(2):143–158

    Article  CAS  Google Scholar 

  2. Chandra P, Enespa SR, Arora PK (2020) Microbial lipases and their industrial applications: A comprehensive review. Microb Cell Fact 19:169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kapoor M, Gupta MN (2012) Lipase promiscuity and its biochemical applications. Process Biochem 47(4):555–569

    Article  CAS  Google Scholar 

  4. Javed S, Azeem F, Hussain S et al (2018) Bacterial lipases: A review on purification and characterization. Prog Biophys Mol Biol 132:23–34

    Article  CAS  PubMed  Google Scholar 

  5. Choudhury P, Bhunia B (2015) Industrial application of lipase: A review. Biopharm J 1(2):41–47

    Google Scholar 

  6. Santos KC, Cassimiro DMJ, Avelar MHM et al (2013) Characterization of the catalytic properties of lipases from plant seeds for the production of concentrated fatty acids from different vegetable oils. Ind Crops Prod 49:462–470

    Article  CAS  Google Scholar 

  7. Kazlauskas RJ (1994) Elucidating structure-mechanism relationships in lipases: Prospects for predicting and engineering catalytic properties. Trends Biotechnol 12(11):464–472

    Article  CAS  PubMed  Google Scholar 

  8. Fuciños P, González R, Atanes E et al (2012) Lipases and esterases from extremophiles: Overview and case example of the production and purification of an esterase from Thermus thermophilus HB27. Methods Mol Biol 861:239–266

    Article  PubMed  Google Scholar 

  9. Salameh M, Wiegel J (2007) Lipases from Extremophiles and Potential for Industrial Applications. Adv Appl Microbiol 61:253–283

    Article  CAS  PubMed  Google Scholar 

  10. Takami H, Nishi S, Lu J et al (2004) Genomic characterization of thermophilic Geobacillus species isolated from the deepest sea mud of the Mariana Trench. Extremophiles 8:351–356

    Article  CAS  PubMed  Google Scholar 

  11. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: Advances and challenges. Front Microbiol 5:1–17

    Article  Google Scholar 

  12. Arnau J, Lauritzen C, Petersen GE, Pedersen J (2006) Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expr Purif 48(1):1–13

    Article  CAS  PubMed  Google Scholar 

  13. Booth WT, Schlachter CR, Pote S et al (2018) Impact of an N-terminal polyhistidine tag on protein thermal stability. ACS Omega 3(1):760–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carson M, Johnson DH, McDonald H et al (2007) His-tag impact on structure. Acta Crystallogr Sect D Biol Crystallogr D3:295–301

    Article  Google Scholar 

  15. Ronimus RS, Parker LE, Morgan HW (1997) The utilization of RAPD-PCR for identifying thermophilic and mesophilic Bacillus species. FEMS Microbiol Lett 147(1):75–79

    Article  CAS  PubMed  Google Scholar 

  16. Bergmans HEN, Van Die IM, Hoekstra WPM (1981) Transformation in Escherichia coli: stages in the process. J Bacteriol 146(2):564–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smith PK, Krohn RI, Hermanson GT et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  PubMed  Google Scholar 

  18. Maruyama T, Nakajima M, Kondo H et al (2003) Can lipases hydrolyze a peptide bond? Enzyme Microb Technol 32:655–657

    Article  CAS  Google Scholar 

  19. Cho AR, Yoo SK, Kim EJ (2000) Cloning, sequencing and expression in Escherichia coli of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol Lett 186:235–238

    Article  CAS  PubMed  Google Scholar 

  20. Koseki M, Tsuji K, Nakagawa Y et al (1989) Effects of Gum Arabic and Pectin on the Emulsification, the Lipase Reaction, and the Plasma Cholesterol Level in Rats. Agric Biol Chem 53(12):3127–3132

    CAS  Google Scholar 

  21. Hasan F, Shah AA, Hameed A (2009) Methods for detection and characterization of lipases: A comprehensive review. Biotechnol Adv 27(6):782–798

    Article  CAS  PubMed  Google Scholar 

  22. Glogauer A, Martini VP, Faoro H et al (2011) Identification and characterization of a new true lipase isolated through metagenomic approach. Microb Cell Fact 10:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tiss A, Carrière F, Douchet I et al (2002) Interfacial binding and activity of lipases at the lipid-water interface: Effects of Gum Arabic and surface pressure. Colloids Surf, B 26(1–2):135–145

    Article  CAS  Google Scholar 

  24. Salaberría F, Palla C, Carrín ME (2017) Hydrolytic Activity of Castor Bean Powder: Effect of Gum Arabic, Lipase and Oil Concentrations. JAOCS, J Am Oil Chem Soc 94(5):741–745

    Article  Google Scholar 

  25. Kwon DY, Rhee JS (1986) A simple and rapid colorimetric method for determination of free fatty acids for lipase assay. J Am Oil Chem Soc 63:89–72

    Article  CAS  Google Scholar 

  26. Zhang ZY, Clemens JC, Schubert HL et al (1992) Expression, purification, and physicochemical characterization of a recombinant Yersinia protein tyrosine phosphatase. J Biol Chem 267(33):23759–23766

    Article  CAS  PubMed  Google Scholar 

  27. Yang J, Zhang Y (2015) I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res 43:174–181

    Article  Google Scholar 

  28. Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539–539

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rice P, Longden L, Bleasby A (2000) EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet 16(6):276–277

    Article  CAS  PubMed  Google Scholar 

  30. Garnier J, Osguthorpe DJ, Robson B (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 120:97–120

    Article  CAS  PubMed  Google Scholar 

  31. Abd Rahman RNZR, Shariff FM, Basri M, Salleh AB (2012) 3D structure Elucidation of thermostable l2 lipase from thermophilic Bacillus sp. L2. Int J Mol Sci 13:9207–9217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Takami H, Takaki Y, Chee GJ et al (2004) Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus. Nucleic Acids Res 32(21):6292–6303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nielsen H, Engelbrecht J, Brunak S, Von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10(1):1–6

    Article  CAS  PubMed  Google Scholar 

  34. Käll L, Krogh A, Sonnhammer ELL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036

    Article  PubMed  Google Scholar 

  35. Moharana TR, Pal B, Rao NM (2019) X-ray structure and characterization of a thermostable lipase from Geobacillus thermoleovorans. Biochem Biophys Res Commun 508(1):145–151

    Article  CAS  PubMed  Google Scholar 

  36. Jeong ST, Kim HK, Kim SJ et al (2002) Novel zinc-binding center and a temperature switch in the Bacillus stearothermophilus L1 lipase. J Biol Chem 277(19):17041–17047

    Article  CAS  PubMed  Google Scholar 

  37. Tyndall JDA, Sinchaikul S, Fothergill-Gilmore LA et al (2002) Crystal structure of a thermostable lipase from Bacillus stearothermophilus P1. J Mol Biol 323:859–569

    Article  CAS  PubMed  Google Scholar 

  38. Zhu Y, Li H, Ni H et al (2015) Molecular cloning and characterization of a thermostable lipase from deep-sea thermophile Geobacillus sp. EPT9. World J Microbiol Biotechnol 31(2):295–306

    Article  CAS  PubMed  Google Scholar 

  39. Derewenda ZS, Sharp AM (1993) News from the interface: the molecular structures of triacyglyceride lipases. Trends Biochem Sci 18(1):20–25

    Article  CAS  PubMed  Google Scholar 

  40. Khan FI, Lan D, Durrani R et al (2017) The lid domain in lipases: Structural and functional determinant of enzymatic properties. Front Bioeng Biotechnol 5:16

    Article  PubMed  PubMed Central  Google Scholar 

  41. De Almeida JM, Moure VR, Müller-Santos M et al (2018) Tailoring recombinant lipases: Keeping the His-Tag favors esterification reactions, removing it favors hydrolysis reactions. Sci Rep 8:10000

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhang XY, Fan X, Qiu YJ et al (2014) Newly identified thermostable esterase from Sulfobacillus acidophilus: Properties and performance in phthalate ester degradation. Appl Environ Microbiol 80(22):6870–6878

    Article  PubMed  PubMed Central  Google Scholar 

  43. da Silva LR, Block JM (2019) Coconut oil: What do we really know about it so far? Food Qual Saf 68(7):67–72

    Google Scholar 

  44. Masomian M, Rahman RNZRA, Salleh AB (2018) A novel method of affinity tag cleavage in the purification of a recombinant thermostable lipase from Aneurinibacillus thermoaerophilus strain HZ. Catalysts 8(10):479

    Article  Google Scholar 

  45. Horchani H, Sabrina L, Régine L et al (2010) Heterologous expression and N-terminal His-tagging processes affect the catalytic properties of staphylococcal lipases: A monolayer study. J Colloid Interface Sci 350:586–594

    Article  CAS  PubMed  Google Scholar 

  46. Horchani H, Ouertani S, Gargouri Y, Sayari A (2009) The N-terminal His-tag and the recombination process affect the biochemical properties of Staphylococcus aureus lipase produced in Escherichia coli. J Mol Catal B Enzym 61:194–201

    Article  CAS  Google Scholar 

  47. Hertadi R, Widhyastuti H (2015) Effect of Ca2+ Ion to the Activity and Stability of Lipase Isolated from Chromohalobacter japonicus BK-AB18. Procedia Chem 16:306–313

    Article  CAS  Google Scholar 

  48. Ran C, He S, Yang Y et al (2015) A novel lipase as aquafeed additive for warm-water aquaculture. PLoS ONE 10(7):e0132049

    Article  PubMed  PubMed Central  Google Scholar 

  49. Carrea G, Riva S (2000) Properties and Synthetic Applications of Enzymes in Organic Solvents. Angew Chemie Int Ed 39:2226–2254

    Article  CAS  Google Scholar 

  50. Kumar A, Dhar K, Kanwar SS, Arora PK (2016) Lipase catalysis in organic solvents: Advantages and applications. Biol Proced Online 18:2

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kamal Z, Yedavalli P, Deshmukh MV, Rao NM (2013) Lipase in aqueous-polar organic solvents: Activity, structure, and stability. Protein Sci 22(7):904–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shehata M, Timucin E, Venturini A, Sezerman OU (2020) Understanding thermal and organic solvent stability of thermoalkalophilic lipases: insights from computational predictions and experiments. J Mol Model 26:122

    Article  CAS  PubMed  Google Scholar 

  53. Guncheva M, Zhiryakova D (2011) Catalytic properties and potential applications of Bacillus lipases. J Mol Catal B Enzym 68(1):1–21

    Article  CAS  Google Scholar 

  54. Helistö P, Korpela T (1998) Effects of detergents on activity of microbial lipases as measured by the nitrophenyl alkanoate esters method. Enzyme Microb Technol 23(1–2):113–117

    Article  Google Scholar 

  55. Dharmsthiti S, Luchai S (1999) Production, purification and characterization of thermophilic lipase from Bacillus sp. THL027. FEMS Microbiol Lett 179:241–246

    Article  CAS  PubMed  Google Scholar 

  56. Overbeeke PLA, Govardhan C, Khalaf N et al (2000) Influence of lid conformation on lipase enantioselectivity. J Mol Catal - B Enzym 10:385–393

    Article  CAS  Google Scholar 

  57. Salihu A, Alam MZ (2015) Solvent tolerant lipases: A review. Process Biochem 50(1):86–96

    Article  CAS  Google Scholar 

  58. Issariyakul T, Dalai AK (2014) Biodiesel from vegetable oils. Renew Sustain Energy Rev 31:446–471

    Article  CAS  Google Scholar 

  59. Costa-Silva TA, Carvalho AKF, Souza CRF et al (2017) Enzymatic Transesterification of Coconut Oil Using Chitosan-Immobilized Lipase Produced by Fluidized-Bed System. Energy Fuels 31(11):12209–12216

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Gebze Technical University research project (BAP 2012 A-13).

Author information

Authors and Affiliations

Authors

Contributions

İÖ designed the study. AT, DE performed the study. AT, DE and İÖ analysed the data. İÖ and AT wrote the paper. All authors read and approved the manuscript.

Corresponding author

Correspondence to F. İnci Özdemir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 2154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özdemir, F.İ., Tülek, A. & Erdoğan, D. Identification and Heterologous Production of a Lipase from Geobacillus kaustophilus DSM 7263T and Tailoring Its N-Terminal by a His-Tag Epitope. Protein J 40, 436–447 (2021). https://doi.org/10.1007/s10930-021-09987-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-021-09987-4

Keywords

Navigation