Skip to main content
Log in

Modelling Industrial Catalytic Reforming of Lowoctane Gasoline

  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

Naphtha reforming is one of the most important industrial processes in refineries. The products include aromatic hydrocarbons such as benzene, toluene, and xylenes, which are frillier used as high octane additives to gasoline. To increase the efficiency of the process, it is necessary to develop a new method of naphtha reforming. In this work, we have proposed a mathematical model of catalytic refining of low-octane gasoline fracdons into high-octane fractions. The model is based on kinetic equations, established for commercial gasoline reforming in the presence of the platinum-rhenium catalyst on a γ-Al2O3 carrier in the industrial-scale conditions. The equation: describe the dependence of the content of paraffinic, naphthenic, and aromatic hydrocarbon fractions on the process parameters, including volumetric rate and the reaction temperature. The mathematical model had been validated by comparing calculated results with the industrial data obtained from the commercial naphtha reforming production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. E. D. Ivanchina, M. V. Kirgina, N. V. Chekantsev, B. V. Sakhnevich, E. V. Sviridova and R. V. Romanovskiy, Complex modeling system for optimization of compounding process in gasoline pool to produce high-octane finished gasoline fuel. Chemical Engineering Journal, 2015, 282, 194-205.

    Article  CAS  Google Scholar 

  2. J. Bae, S. Lee, S. Kim, J. Oh, S. Choi, M. Bae, I. Kang and S. P. Katikaneni, Liquid fuel processing for hydrogen production: A review. International Journal of Hydrogen Energy, 2016, 41. 19990-20022.

    Article  CAS  Google Scholar 

  3. M. R. Rahimpour, M. Jafari and D. Iranshahi, Progress in catalytic naphtha reforming process: A review. Applied Energy, 2013. 109, 79-93.

    Article  CAS  Google Scholar 

  4. I. M. Kolesnikov, Catalysis and production of catalysts, “Technika” TUMA GROUP, 2004.

    Google Scholar 

  5. V.A. Lyubimenko, S. I. Kolesnikov, M. Yu. Kilyanov, Atmospheric reforming of a gasoline fraction on an alumosilicate zeolite. Chemistry and Technology of Fuels and Oils, 2008, 44, 404-408.

    Article  CAS  Google Scholar 

  6. D. Iranshahi, E. Pourazadi, K. Paymooni, M. R. Rahimpour, A. Jahanmiri and B. Moghtaderi, A dynamic membrane reactor concept for naphtha reforming, considering radial-flow patterns for both sweeping gas and reacting materials. Chemical Engineering Journal, 2011, 178, 264-275.

    Article  CAS  Google Scholar 

  7. R. B. Smith, Kinetic analysis of naphtha reforming with platinum catalyst. Chem.Eng. Prog., 1959, 55, 76-80.

    CAS  Google Scholar 

  8. W. S. Kmak, A kinetic simulation model of the powerforming process. AIChE Meeting, Houston, TX, 1972.

  9. H. G. Krane, Groh, A. B., Schuhnan, B.L., Sinfeh, J.H., 4. Reactions in catalytic reforming of naphthas. In: 5th World Petroleum Congress, New York, May 30-June 5, 1959.

  10. M. P. Ramage, K. R. Graziani and F. J. Krambeck, 6 Development of mobil’s kinetic reforming model. Chemical Engineering Science.1980, 35, 41-48.

    Article  CAS  Google Scholar 

  11. A. Wolff and J. Kramarz, Kinetic models of catalytic reforming. Chemistry and Technology of Fuels and Oils.1979, 15, 870-877.

    Article  Google Scholar 

  12. Y. M. Zhorov, G. M. Panchenkov, I. Y. Shapiro. Mathematical description of platforming carried out under severe conditions. Chemistry and Technology of Fuels and Oils, 1970, 6, 849-852.

    Article  Google Scholar 

  13. M.-O. Coppens and G. F. Froment, Fractal aspects in the catalytic reforming of naphtha. Chemical Engineering Science. 1996, 51, 2283-2292.

    Article  CAS  Google Scholar 

  14. P. A. Gushchin. I. M. Kolesnikov, V. A. Vinokurov, E. V. Ivanov, V. A. Lyubimenko, V. N. Borshch, Alkylation of benzene with ethylene in the presence of dimethyldichlorosilane. Journal of Catalysis, 2017, 352, 75-82.

    Article  CAS  Google Scholar 

  15. G. F. Froment, The kinetics of complex catalytic reactions. Chemical Engineering Science, 1987, 42, 1073-1037.

    Article  CAS  Google Scholar 

  16. R Satelo-Boyas and G. F. Froment, Fundamental kinetic modeling of catalytic reforming. Industrial & Engineering Chemistry Research. 2009, 48, 1107-1119.

  17. I. M. Kolesnikov and I. V. Zuber, Kinetics of reforming of naphtha cut at atmospheric pressure. Chemistry and Technology of Fuels and Oils, 2008, 44, 259-264.

    Article  CAS  Google Scholar 

  18. G. P. Vathi and K. K. Chaudhuri, Modelling and simulation of commercial catalytic naphtha reformers. The Canadian Journal of Chemical Engineering. 1997, 75, 930-937.

    Article  Google Scholar 

  19. H. K. Aboalfazl Askari, M. Reza Rahimi, M. Ghanbari, Simulation and modelling of catalytic reforming process. Petroleum & Coal 2012, 54, 76-84.

    Google Scholar 

  20. I. M. Kolesnikov, V. A. Vinokurov, P. A. Gushchin, E. V. Ivanov, S. I. Kolesnikov, V. A. Lyubimenko, Efficient catalysts for benzene alkylation with olefins. Catalysis Communications, 2016, 82, 1-6.

    Article  CAS  Google Scholar 

  21. D. Bommannan, R. D. Srivastava and D. N. Saraf, Modelling of catalytic naphtha reformers, The Canadian Journal of Chemical Engineering, 1989, 67, 405-411.

    Article  CAS  Google Scholar 

  22. Z. Hongjun, S. Mingliang, W. Huixin, L. Zeji and J. Hongbo. Modeling and simulation of moving bed reactor for catalytic naphtha reforming. Petroleum Science and Technology, 2010, 28, 667-676.

    Article  CAS  Google Scholar 

  23. I. M. Kolesnikov. P. A. Gushchin, A. Salihu, S. I. Kolesnikov, O. B. Chernova, Performance of Reformers with Different Catalyst Distributions in the Reactors. Parametric Equations for Calculating the Octane Number of the Reformate. Chemistry and Technology of Fuels and Oils, 2015, 51, 1-9.

    Article  CAS  Google Scholar 

  24. R. S. Mohaddecy, Developing a steady-state kinetic model for industrial scale semi-regenerative catalytic naphtha reforming process. Kemija u industriji, 2014, 63, 149-154.

    Article  Google Scholar 

  25. A. G. Koksharov, E. D. Ivanchina, S. A. Faleev and A. I. Fedyushkin. The way of increasing resource efficiency of naphtha reforming under conditions of catalyst acid and metal activity balance by-mathematical modeling method. Procedia Engineering, 2015, 113, 1-7.

    Article  CAS  Google Scholar 

  26. M. Z. Stijepovic, P. Linke and M. Kijevcanin, Optimization approach for continuous catalytic regenerative reformer processes. Energy & Fuels, 2010, 24, 1908-1916.

    Article  CAS  Google Scholar 

  27. M. Wei, M. Yang, F. Qian and W. Du. Optimization of catalytic naphtha reforming process based on modified differential evolution algorithm. IFAC-PapersOnLine, 2015, 48, 373-378.

    Article  Google Scholar 

  28. E. D. Ivanchina, E. S. Sharova and I. V. Yakupova, Mathematical modelling method application for optimisation of catalytic reforming process. Procadia Chemistry, 2014, 10, 197-202.

    Article  CAS  Google Scholar 

  29. M. S. Gyngazova, A. V. Krantsov, E. D. Ivanchina, M. V. Korolenko and N. V. Chekantsev, Reactor modeling and simulation of moving-bed catalytic reforming process. Chemical Engineering Journal, 2011, 176-177, 134-143.

    Article  CAS  Google Scholar 

  30. M. A. Rodriguez and J. Ancheyta, Detailed description of kinetic and reactor modeling for naphtha catalytic reforming. Fuel, 2011, 90, 3492-3508.

    Article  CAS  Google Scholar 

  31. M. R. Rahimpour, D. Iranshahi, E. Pourazadi and K. Paymooni, Evaluation of OptimumDesign Parameters and Operating Conditions of Axial- and Radial-Flow Tubular Naphtha Reforming Reactors. Using the Differential Evolution Method, Considering Catalyst Deactivation. Energy & Fuels, 2011, 25, 762-772.

    Article  CAS  Google Scholar 

  32. H. M. Arani, S. Shokri and M. Shirvani, Dynamic Modeling and Simulation of Catalytic Naphtha Reforming. International Journal of Chemical Engineering and Applications. 2010, 1, 159-164.

    Article  CAS  Google Scholar 

  33. I. Elizalde and J. Ancheyta, Dynamic modeling and simulation of a naphtha catalytic reforming reactor. Applied Mathematical Modelling, 2015, 39, 764-775.

    Article  Google Scholar 

  34. M. D. Smolikov, V. V. Pashkov, E. V. Zatolokina, A. S. Beliy, Experience in the industrial-scale production and use of new reforming catalysts PR-81 and SPR-81. Catalysis in industry, 2009, 1, 42-47.

    Article  Google Scholar 

Download references

Acknowledgments

The work was carried out with the financial support of the Ministry of science and higher education of the Russian Federation in the framework of the Government policy of science and technology support, project No. FSZE-2020-0007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Petrova.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 1, pp. 85 — 91, January— February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrova, D.A., Gushchin, P.A., Ivanov, E.V. et al. Modelling Industrial Catalytic Reforming of Lowoctane Gasoline. Chem Technol Fuels Oils 57, 143–159 (2021). https://doi.org/10.1007/s10553-021-01234-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-021-01234-x

Keywords

Navigation