Skip to main content

Advertisement

Log in

Modification of polymer electrolyte blend PEO/PVDF–HFP by low-energy O+ ion irradiation to improve electrolyte behavior

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

PEO/PVDF–HFP [poly(ethylene oxide)/poly(vinylidene fluoride-co-hexafluoropropylene)] solid polymer electrolyte blend incorporating varying weights of LiTFSI [lithium bis (trifluoromethane) sulfonimide] salt was prepared. The blend with 20 wt.% of salt that exhibits maximum ionic conductivity was subjected to microstructural modification by exposing to low-energy ions of oxygen at different fluences. The ionic conductivity of the system increases by one order in magnitude when subjected to oxygen ion irradiation. The dielectric loss tangent curves are used to extract ions relaxation time. The relaxation time τ of the system is reduced from 1.42 to 0.71 μs upon irradiation which indicates enhanced segmental motion due to a rise in amorphous region in polymer matrix. The ion activation energy in the system decreases to 0.041 eV from 0.063 eV. Dielectric studies suggest an increase in dipoles in the irradiated systems possibly due to polymer chain scission in the matrix. The increase in disordered phase by ion irradiation is supported by change in crystallinity from 24% for the unirradiated systems to about 14% for the irradiated systems by X-ray diffraction and differential scanning calorimetry analysis. The shift in prominent peaks observed in Fourier transform infrared spectroscopy suggests possible scission of the polymer chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Armand M (1994) The history of polymer electrolytes. Solid State Ion 69:309–319

    Article  CAS  Google Scholar 

  2. Hofmann A, Schulz M, Hanemann T (2013) Gel electrolytes based on ionic liquids for advanced lithium polymer batteries. Electrochim Acta 89:823–831

    Article  CAS  Google Scholar 

  3. Bruce PG, Vincent CA (1993) Polymer electrolytes. J Chem Soc Faraday Trans 89(17):3187–3203

    Article  CAS  Google Scholar 

  4. Koh Sing N, Ramesh S, Ramesh K, Joon Ching J (2016) A review of polymer electrolytes: fundamentals, approaches and applications. Ionics 22:1259–1279

    Article  CAS  Google Scholar 

  5. Gray FM (1997) Polymer electrolytes. The royal society of chemistry, Cambridge

    Google Scholar 

  6. Mindemark J, Lacey MJ, Bowden T, Brandell D (2017) Beyond PEO – alternative host materials for Li+-conducting solid polymer electrolytes. Prog Polym Sci 81:114–143

    Article  CAS  Google Scholar 

  7. Mishra Rk, Nankumar K, Abraham J, Jayanarayanan K, Joseph K, Thomas S (2017) Conducting polyurethane blends: recent advances and perspectives. In: Thomas S, Datta J, Haponiuk JT, Reghunadhan A (eds) polyurethane. Blends and Interpenetrating Polymer Networks, Polymers

    Google Scholar 

  8. Arroub H, Hsissou R, Elharfi A (2020) Investigation of modified chitosan as potential polyelectrolyte polymer and eco-friendly for the treatment of galvanization wastewater using novel hybrid process. Res Chem 2:100047

    CAS  Google Scholar 

  9. Arroub H, Hsissou R, El Harfi A (2019) Adsorption of Zn2+ and Cu2+ Ions by activated carbon prepared from dates stones computational approach. Anal Bioanal Electrochem 11(10):1398–1413

    CAS  Google Scholar 

  10. Ghosh A, Kofinas P (2008) PEO based block copolymer as solid state lithium battery electrolyte. ECS Trans 11:131–137

    Article  CAS  Google Scholar 

  11. Itoh T, Miyamura Y, Ichikawa Y, Uno T, Kubo M, Yamamoto O (2003) Composite polymer electrolytes of poly(ethylene oxide)/Batio3/Li Salt with hyper branched polymer. J Power Source 119:403–408

    Article  CAS  Google Scholar 

  12. Kalyana Sundaram NT, Subramania A (2007) Nano-size Lialo2 ceramic filler incorporated porous Pvdf-Co-Hfp electrolyte for lithium-Ion battery applications. Electrochim Acta 52:4987–4993

    Article  CAS  Google Scholar 

  13. Pradeepa P, Ramesh Prabhu M, Edwinraj S, Sowmya S, Kalaiselvimary J (2016) Optimization of hybrid polymer electrolytes with the effect of lithium salt concentration in PEO/PVdF-HFP blends. Mater Sci Eng, B 205(6):7–17

    Google Scholar 

  14. Xi J, Qiu XQ, Tang X (2006) PVDF–PEO blends based microporous polymer electrolyte: effect of PEO on pore configurations and ionic conductivity. J of Power Sources 157:501–506

    Article  CAS  Google Scholar 

  15. Said B, M’rabet S, Hsissou R, ElHarfi A (2020) Synthesis of new low-cost organic ultra filtration membrane made from polysulfone/polyetherimide blends and its application for soluble azoic dyes removal. J Mater Sci Technol 9(3):4763–4772

    CAS  Google Scholar 

  16. Tominaga Y, Yamazaki K, Nanthana, (2014) Effect of anions on lithium ion conduction in poly(ethylene carbonate)-based polymer electrolytes. ECS Trans 62(1):151–157

    Article  CAS  Google Scholar 

  17. MacGlashan GS, Andreev YG, Bruce PG (1999) Structure of the polymer electrolyte poly (ethylene oxide): LiAsF6. Nature 398(792):794

    Google Scholar 

  18. Das S, Ghosh A (2015) Ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate. AIP Adv 5(2):027125

    Article  CAS  Google Scholar 

  19. Angulakshmi N, Nahma KS, Nairb JR, Gerbaldib C, Bongiovannib R, Penazzib P, Manuel Stephan A (2013) Cycling profile of MgAl2O4-incorporated composite electrolytes composed of PEO and LiPF6 for lithium polymer batteries. Electrochim Acta 90:179–185

    Article  CAS  Google Scholar 

  20. Fahmi EM, Ahmad A, Nazeri NNM, HamzahH, Razali H, Rahman MYA, (2012) Effect of LiBF4 salt concentration on the properties of poly(Ethylene Oxide)-based composite polymer electrolyte. Int J Electrochem Sci 7:5798–5804

    CAS  Google Scholar 

  21. PoulRavn Sorensen I, Jacobsen T (1983) Phase diagram and conductivity of polymer electrolyte PEO-LiCF3SO3. Polym Bull 9:47–51

    Google Scholar 

  22. Ramesh S, Liew CW (2013) Development and investigation on PMMA–PVC blend-based solid polymer electrolytes with LiTFSI as dopant salt. Polym Bulletin 70:1277–1288

    Article  CAS  Google Scholar 

  23. Pradhan DK, Choudhary RN, Samantaray BK (2009) Studies of dielectric and electrical properties of plasticized polymer nanocomposite electrolytes Mater. Chem Phys 115:557–561

    CAS  Google Scholar 

  24. Wright PV (1975) Electrical conductivity in ionic complexes of poly (ethylene oxide). Br Polym J 7(319):327

    Google Scholar 

  25. Sun CN, Zawodzinski TA (2015) Nanostructure enhanced ionic transport in fullerene reinforced solid polymer electrolytes. Phys Chem Chem Phys 17:8266

    Article  CAS  PubMed  Google Scholar 

  26. Sunitha VR, Radhakrishnan S (2020) Gamma irradiation effects on conductivity and dielectric behaviour of PEO based nano-composite polymer electrolyte systems. Polym Bull 77:655–670

    Article  CAS  Google Scholar 

  27. Sundaramahalingam K, Muthuvinayagam M, Nallamuthu N, Vanitha D, Vahini M (2019) Investigations on lithium acetate-doped PVA/PVP solid polymer blends electrolytes. Polym Bull 76(11):5577–5602

    Article  CAS  Google Scholar 

  28. Manjunatha H, Damle R, Pravin K, Kumaraswamy GN (2018) Modification in the transport and morphological properties of solid polymer electrolyte system by low-energy ion irradiation. Ionics 24(10):3027–3037

    Article  CAS  Google Scholar 

  29. Kumar A, Deka M, Banerjee S (2010) Enhanced ionic conductivity in oxygen ion irradiated poly(vinylidenefluoride-hexafluoropropylene) based nanocomposite gel polymer electrolytes. Solid State Ionics 181:609–615

    Article  CAS  Google Scholar 

  30. Praveen D, Bhat SV, Damle R (2013) Role of silica nanoparticles in conductivity enhancement of nanocomposite solid polymer electrolytes: (PEGxNaBr): ySiO2. Ionics 19:1375–1379

    Article  CAS  Google Scholar 

  31. Aneesh Kumar KV, Kumaraswamy GN, Ranganathaiah C, Ravikumar HB (2017) Influence of oxygen ion implantation on the free volume parameters and electrical conductivity of a polymer-based bakelite RPC detector material. J App Poly Sci. https://doi.org/10.1002/app.44962

    Article  Google Scholar 

  32. Yesappa L, Ashokkumar SP, Vijeth H, Basappa M, Ganesh S, Devendrappa H (2019) Effect of electron beam irradiation on structure, morphology, and optical properties of PVDF-HFP/PEO blend polymer electrolyte films. J Radioanal Nucl Chem 322:5–10

    Article  CAS  Google Scholar 

  33. Patla SK, Mukhopadhyay M, Ray R, Maiti P, Mukhopadhyay AK, Sen D, Asokan K (2019) Non-suitability of high-energy (MeV) irradiation for property enhancement of structurally stable poly (ethylene oxide) polyvinylidene fluoride blend bromide composite electrolyte membrane. Ionics 25:2159–2170

    Article  CAS  Google Scholar 

  34. Dave G, Kanchan D, Singh F (2019) Conductivity and dielectric behaviour of PEO PAM- NACF3SO3 blend electrolyte system irradiated with swift heavy O6+ion beam. Rad Phy Chem 161:87–94

    Article  CAS  Google Scholar 

  35. Kanjilal D, Madhu T, Rodrigues GO, Rao UK, Safvan CP, Rao A (2001) Development of low energy ion beam facility at NSC. Ind J Pure Appl Phys 39:25–28

    CAS  Google Scholar 

  36. McCollum JR, Vincent CA (1987) Polymer electrolytes reviews I and II. Elsevier, Amsterdam

    Google Scholar 

  37. Macdonald JR (1987) Impedance spectroscopy. Wiley, Switzerland

    Google Scholar 

  38. Pradeepa P, Edwinraj S, Ramesh Prabhu M (2015) Effects of ceramic filler in poly(vinyl chloride)/poly(ethyl methacrylate) based polymer blend electrolytes Chin. Chem Lett 26:1191

    CAS  Google Scholar 

  39. Ibrahim S, Yasin SMM, Nee NM, Ahmad R, Johan MR (2012) Conductivity, thermal and morphology studies of PEO based salted polymer electrolytes. Solid State Ion 14:1111–1116

    CAS  Google Scholar 

  40. Popok VN (2012) Ion implantation of polymers: formation of nanoparticulate materials. Rev Adv Mater Sci 30:1–21

    CAS  Google Scholar 

  41. Dhatarwal P, Sengwa RJ (2018) Influence of solid polymer electrolyte preparation methods on the performance of (PEO–PMMA)–LiBF4 films for lithium ion battery applications. Polym Bull 75:5645–5666

    Article  CAS  Google Scholar 

  42. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea dielectric press, London

    Google Scholar 

  43. Shukla N, Thakur AK, Marks AST (2014) Ion conduction mechanism in solid polymer electrolyte: an applicability of almond-west formalism. Int J Electrochem Sci 9:7644–7659

    Google Scholar 

  44. Agrawal SL, Singh M, Tripathi M, Dwivedi MM, Pandey K (2009) Dielectric relaxation studies on [PEO–SiO2]:NH4SCN nanocomposite polymer electrolyte films. J Mater Sci 44:6060–6068

    Article  CAS  Google Scholar 

  45. Jayanthi S, Sundaresan B (2015) Effect of ultrasonic irradiation and TiO2 on the determination of electrical and dielectric properties of PEO–P(VdF-HFP)– LiClO4-based nanocomposite polymer blend electrolytes. Ionics 21:705–717

    Article  CAS  Google Scholar 

  46. Sharma P, Kanchan DK, Gondaliya N (2013) Effect of ethylene carbonate concentration on structural and electrical properties of PEO-PMMA polymer blends. Ionics 19:777–785

    Article  CAS  Google Scholar 

  47. Sharma P, Kanchan DK, Gondaliya N, Pant M, Jayswal M (2013) Conductivity relaxation in Ag+ ion conducting PEO-PMMA-PEG polymer blends. Ionics 19:301–307

    Article  CAS  Google Scholar 

  48. Majid SR, Arof AK (2007) Electrical behavior of proton-conducting chitosan-phosphoricacid-based electrolytes. Phys B 390:209–215

    Article  CAS  Google Scholar 

  49. Lee EH (1999) Ion-beam modification of polymeric materials-fundamental principles and applications. Nucl Inst Method Phys Res B 151:29–41

    Article  CAS  Google Scholar 

  50. Kumar A, Saikia D, Avasthi DK, Singh F (2005) Ionic conduction in 70 MeV C5+ ion-irradiated P(VDF–HFP)–(PC+DEC)–LiCF3SO3 gel polymer electrolyte system. Solid State Ion 176:1585–1590

    Article  CAS  Google Scholar 

  51. Cyrot H (1981) A possible origin for the vogel-fulcher law. Phys Lett 83A:275–278

    Article  CAS  Google Scholar 

  52. Khair ASA, Arof AK (2010) Conductivity studies of starch-based polymer electrolytes. Ionics 16(2):123–129

    Article  CAS  Google Scholar 

  53. Papke BL, Ratner MA, Shriver DF (1982) Vibrational spectroscopic determination of structure and ion pairing in complexes of poly (ethylene oxide) with lithium salts. Electrochem Soc 129(7):1434–1438

    Article  CAS  Google Scholar 

  54. Ulaganathan M, Rajendran S (2010) Preparation and characterizations of PVAc/P (VdF-HFP)-based polymer blend electrolytes Ionics 16 :515 -521

  55. Raghu S, Subramanya K, Ganesh S, Devendrappa H (2013) Electron beam induced modifications in conductivity and dielectric property of polymer electrolyte film. Rad Meas 53:56–64

    Article  CAS  Google Scholar 

  56. Raghu S, Archana K, Sharanappa C, Ganesh S, Devendrappa H (2015) The physical and chemical properties of gamma ray irradiated polymer electrolyte films. J Non-Crystal Solid 426:55–62

    Article  CAS  Google Scholar 

  57. Jiang Y, Xu J, Zhuang Q, Jin L, Sun S (2008) A novel PEO-based composite solid state polymer electrolyte with methyl group-functionalized SBA-15 filler for rechargeable lithium batteries. J Solid State Electrochem 12:353–362

    Article  CAS  Google Scholar 

  58. Karuppanan P, Mohanty S, Nayak SK (2015) Improved electrochemical and photovoltaic performance of dye sensitized solar cell based on PEO/PVDF-HFP/silane modified TiO2 electrolytes and MWCNT/Nafioncounter electrode. RSC Adv 51:40491–41405

    Google Scholar 

  59. Benz M, Euler WB, Gregory OJ (2002) The role of solution phase water on the deposition of thin films of poly(vinylidene fluoride). Macromolecules 35:2682–2688

    Article  CAS  Google Scholar 

  60. Reddy MJ, Chu PP (2002) Effect of Mg2+ on PEO morphology and conductivity. Solid State Ion 149:115

    Article  Google Scholar 

  61. Divyasingh PK, Singh BB (2016) Ion irradiation on polymer electrolyte films: comparative study on conductivity. High Perform Polym 28:1–5

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge IUAC, New Delhi, for providing Low Energy Ion Beam Facility through Sanction Order IUAC/XIII.3A dated 12.01.2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Kumaraswamy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjunatha, H., Damle, R. & Kumaraswamy, G.N. Modification of polymer electrolyte blend PEO/PVDF–HFP by low-energy O+ ion irradiation to improve electrolyte behavior. Polym. Bull. 79, 3929–3950 (2022). https://doi.org/10.1007/s00289-021-03693-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03693-y

Keywords

Navigation