Skip to main content

Advertisement

Log in

Identification of miRNA targets in eggplant in response to Verticillium dahliae by degradome sequencing

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Verticillium wilt is a vascular disease caused by Verticillium dahliae, which has a serious impact on the yield and quality of eggplant. MiRNAs regulates plant growth, development, environmental adaptation and other life activities by controlling the expression of target genes. Although miRNAs have been systematically studied by high-throughput sequencing in eggplant (Solanum melongena L.), their target genes are not identified systematically, which would provide the basis for exploring the mechanism of miRNA mediated gene regulation in response to Verticillium wilt of eggplant. In this study, degradome sequencing was performed using two libraries separately prepared from mock-inoculated and V. dahliae-inoculated seedlings of eggplants. A total of 122 target genes for 49 miRNAs families were identified. Of them, 62 target genes were significantly induced by V. dahliae, including 34 targets were found only in the inoculated seedlings library and 28 targets were shown to be differentially expressed between both two libraries. Further analysis showed that a conserved miRNA could target various genes ranging from one up to 15 or a target gene could be cleaved by 1–5 different miRNAs. QRT-PCR analysis on five miRNAs and their target genes confirmed the reliability of the degradome sequencing data. GO analysis revealed that target genes owned diverse biological functions and transcription regulation was the largest functional category. Analysis on KEGG showed that target genes were mainly involved in plant-pathogen interaction pathway and plant hormone signal transduction pathway to resist disease. This result will provide basic information for further studying the regulatory mechanism of eggplant miRNAs in response to Verticillium wilt infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Addo-Quaye, C., Eshoo, T. W., Bartel, D. P., & Axtell, M. J. (2008). Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis Degradome. Current Biology, 18(10), 758–762.

    Article  CAS  PubMed  Google Scholar 

  • Allen, E., Xie, Z., Gustafson, A. M., & Carrington, J. C. (2005). MicroRNA-directed phasing during Trans -acting siRNA biogenesis in plants. Cell, 121(2), 207–221.

    Article  CAS  PubMed  Google Scholar 

  • Bittner-Eddy, P. D., Crute, I. R., Holub, E. B., & Beynon, J. L. (2000). RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica. The Plant Journal, 21(2), 177–188.

    Article  CAS  PubMed  Google Scholar 

  • Budak, H., & Akpinar, B. A. (2015). Plant miRNAs: Biogenesis, organization and origins. Functional & Integrative Genomics, 15(5), 523–531.

    Article  CAS  Google Scholar 

  • Candar-Cakir, B., Arican, E., & Zhang, B. (2016). Small RNA and degradome deep sequencing reveals drought-and tissue-specific micrornas and their important roles in drought-sensitive and drought-tolerant tomato genotypes. Plant Biotechnology Journal, 14(8), 1727–1746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, N., Wu, S., Fu, J. L., Cao, B. H., Lei, J. J., Chen, C. M., et al. (2016). Overexpression of the eggplant (Solanum melongena) NAC family transcription factor SmNAC suppresses resistance to bacterial wilt. Scientific Reports, 6, 31568.

    Article  CAS  Google Scholar 

  • Conesa, A., Götz, S., García-Gómez, J. M., Terol, J., Talón, M., & Robles, M. (2005). Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18), 3674–3676.

    Article  CAS  PubMed  Google Scholar 

  • Cui, L. G., Shan, J. X., Shi, M., Gao, J. P., & Lin, H. X. (2015). The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant Journal, 80(6), 1108–1117.

    Article  CAS  Google Scholar 

  • Dai, X., Zhuang, Z., & Zhao, P. X. (2011). Computational analysis of miRNA targets in plants: Current status and challenges. Briefings in Bioinformatics, 12(2), 115–121.

    Article  CAS  PubMed  Google Scholar 

  • De Vries, S., Kukuk, A., Von Dahlen, J. K., Schnake, A., Kloesges, T., Rose, L., & E. (2018). Expression profiling across wild and cultivated tomatoes supports the relevance of early miR482/2118 suppression for Phytophthora resistance. Proceedings of the Royal Society Biological Sciences, 285(1873), 20172560.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deng, F., Guo, T., Lefebvre, M., Scaglione, S., Antico, C. J., Jing, T., Yang, X., Shan, W., & Ramonell, K. M. (2017). Expression and regulation of ATL9, an E3 ubiquitin ligase involved in plant defense. PLoS One, 12(11), e0188458.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong, S., Zhang, J., Sun, D., Hao, L., Yang, Q., Hui, W., et al. (2018). Identification of Magnaporthe oryzae -elicited rice novel miRNAs and their targets by miRNA and degradome sequencing. European Journal of Plant Pathology, 151, 629–647.

    Article  CAS  Google Scholar 

  • Ellis, J., Dodds, P., & Pryor, T. (2000). Structure, function and evolution of plant disease resistance genes. Current Opinion in Plant Biology, 3(4), 278–284.

    Article  CAS  PubMed  Google Scholar 

  • Emmanouil, V., & Wood, R. K. (2010). Induction of resistance to Verticillium dahliae and synthesis of antifungal compounds in tomato, pepper and eggplant by injecting leaves with various substances. Journal of Phytopathology, 100(3), 212–225.

    Article  Google Scholar 

  • Fei, Y., Wang, R., Li, H., Liu, S., Zhang, H., & Huang, J. (2018). DPMIND: Degradome-based plant miRNA-target interaction and network database. Bioinformatics, 34(9), 1618–1620.

    Article  CAS  PubMed  Google Scholar 

  • Fradin, E. F., & Thomma, B. P. (2010). Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Molecular Plant Pathology, 7(2), 71–86.

    Article  Google Scholar 

  • Garibaldi, A., Minuto, A., & Gullino, M. L. (2005). Verticillium wilt incited by Verticillium dahliae in eggplant grafted on Solanum torvum in Italy. Plant Disease, 89(7), 777.

    PubMed  Google Scholar 

  • German, M. A., Shujun, L., Gary, S., Meyers, B. C., & Green, P. J. (2009). Construction of parallel analysis of RNA ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome. Nature Protocols, 4(3), 356–362.

    Article  CAS  PubMed  Google Scholar 

  • Hafner, M., Landgraf, P., Ludwig, J., Rice, A., Ojo, T., Lin, C., Holoch, D., Lim, C., & Tuschl, T. (2008). Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods, 44(1), 3–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hideki, H., Kenta, S., Koji, M., Tsukasa, N., Satomi, N., Akio, O., et al. (2014). Draft genome sequence of eggplant (Solanum melongena L.): The representative Solanum species indigenous to the old world. DNA Research,21,6(2014-01-12), 21(6), 649–660.

    Google Scholar 

  • Hong, Y., Zhao, J., Guo, L., Kim, S. C., Deng, X., Wang, G., Zhang, G., Li, M., & Wang, X. (2016). Plant phospholipases D and C and their diverse functions in stress responses. Progress in Lipid Research, 62, 55–74.

    Article  CAS  PubMed  Google Scholar 

  • Huijser, P., & Schmid, M. (2011). The control of developmental phase transitions in plants. Development, 138(19), 4117–4129.

    Article  CAS  PubMed  Google Scholar 

  • Jain, M., & Khurana, J. P. (2009). Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS Journal, 276(11), 3148–3162.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, N., Cui, J., Meng, J., & Luan, Y. (2018). A tomato NBS-LRR gene is positively involved in plant resistance to Phytophthora infestans. Phytopathology, 108(8), 980–987.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, N., Cui, J., Shi, Y., Yang, G., Zhou, X., Hou, X., Meng, J., & Luan, Y. (2019). Tomato lncRNA23468 functions as a competing endogenous RNA to modulate NBS-LRR genes by decoying miR482b in the tomato-Phytophthora infestans interaction. Horticulture Research, 6(1), 28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jue, D. W., Yang, L., Shi, C., Chen, M., & Yang, Q. (2014). Cloning and characterization of aSolanum torvum NPR1gene involved in regulating plant resistance toVerticillium dahliae. Acta Physiologiae Plantarum, 36(11), 2999–3011.

    Article  CAS  Google Scholar 

  • Kantar, M., Unver, T., & Budak, H. (2010). Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Functional & Integrative Genomics, 10(4), 493–507.

    Article  CAS  Google Scholar 

  • Kawasaki, T., Nam, J., Boyes, D. C., Holt, B. F., Hubert, D. A., Wiig, A., et al. (2005). A duplicated pair of Arabidopsis RING-finger E3 ligases contribute to the RPM1- and RPS2-mediated hypersensitive response. Plant Journal, 44(2), 258–270.

    Article  CAS  Google Scholar 

  • Khan, A. M., Khan, A. A., Azhar, M. T., Amrao, L., & Cheema, H. M. N. (2015). Comparative analysis of RGAs encoding NBS-LRR domains in cotton. Journal of the Science of Food and Agriculture, 96(2), 530–538.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M. H., Jeon, H. S., Kim, H. G., & Park, O. K. (2017). An Arabidopsis NAC transcription factor NAC4 promotes pathogen-induced cell death under negative regulation by microRNA164. New Phytologist, 214(1), 343–360.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Beisson, F., Koo, A. J., Molina, I., Pollard, M., & Ohlrogge, J. (2007). Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers. Proceedings of the National Academy of Sciences of the United States of America, 104(46), 18339–18344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, N. A., Zhou, B., Xin, Z., Lu, B., & Jing, H. (2009). Grafting eggplant onto tomato rootstock to suppress Verticillium dahliae infection: The effect of root exudates. Hortscience A Publication of the American Society for Horticultural Science, 44(7), 2058–2062.

    Google Scholar 

  • Liu, X. X., Luo, X. F., Luo, K. X., Liu, K. L., & Pan, T. (2019). Small RNA sequencing reveals dynamic microRNA expression of important nutrient metabolism during development of Camellia oleifera fruit. International Journal of Biological Sciences, 15(2), 416–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llave, C., Xie, Z., Kasschau, K. D., & Carrington, J. C. (2002). Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 297(5589), 2053–2056.

    Article  CAS  PubMed  Google Scholar 

  • Lu, X. Y., & Huang, X. L. (2008). Plant miRNAs and abiotic stress responses. Biochemical and Biophysical Research Communications, 368(3), 458–462.

    Article  CAS  PubMed  Google Scholar 

  • Martin, R. C., Liu, P. P., Goloviznina, N. A., & Nonogaki, H. (2010). MicroRNA, seeds, and Darwin: Diverse function of miRNA in seed biology and plant responses to stress. Journal of Experimental Botany, 61(9), 2229–2234.

    Article  CAS  PubMed  Google Scholar 

  • Mcdowell, J. M., Cuzick, A., Can, C., Beynon, J., Dangl, J. L., & Holub, E. B. (2000). Downy mildew (Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements for NDR1, EDS1, NPR1 and salicylic acid accumulation. Plant Journal, 22(6), 523–529.

    Article  CAS  Google Scholar 

  • Mendes, N. D., Freitas, A. T., & Sagot, M. F. (2009). Current tools for the identification of miRNA genes and their targets. Nucleic Acids Research, 37(8), 2419–2433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyers, B. C., Kozik, A., Griego, A., Kuang, H., & Michelmore, R. W. (2003). Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell, 15(4), 809–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyers, B. C., Axtell, M. J., Bonnie, B., Bartel, D. P., David, B., Bowman, J. L., et al. (2008). Criteria for annotation of plant MicroRNAs. Plant Cell, 20(12), 3186–3190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi, S. J., Cai, T., Hu, Y. G., Chen, Y. M., Hodges, E., Ni, F. R., et al. (2008). Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell, 133(1), 116–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu, X. Y., Liu, X. R., Cai, J. H., Zhu, W. J., Wang, Z., Yang, Q., & You, X. (2018). MiR395 overexpression increases eggplant sensibility to Verticillium dahliae infection. Russian Journal of Plant Physiology, 65(2), 203–210.

    Article  CAS  Google Scholar 

  • Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., & Jones, J. D. G. (2006). A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science, 312(5772), 436–439.

    Article  CAS  PubMed  Google Scholar 

  • Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., & Kanehisa, M. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 27(1), 29–34.

    Article  Google Scholar 

  • Olsen, A. N., Ernst, H. A., Leggio, L. L., & Skriver, K. (2005). NAC transcription factors: Structurally distinct, functionally diverse. Trends in Plant Science, 10(2), 79–87.

    Article  CAS  PubMed  Google Scholar 

  • Romualdi, C., Bortoluzzi, S., D'Alessi, F., & Danieli, G. A. (2003). IDEG6: A web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiological Genomics, 12(2), 159–162.

    Article  CAS  PubMed  Google Scholar 

  • Sahito, Z. A., Wang, L., Sun, Z., Yan, Q., Zhang, X., Jiang, Q., Ullah, I., Tong, Y., & Li, X. (2017). The miR172c-NNC1 module modulates root plastic development in response to salt in soybean. BMC Plant Biology, 17(1), 229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh, D., Ambroise, A., Haicour, R., Sihachakr, D., & Rajam, M. V. (2014). Increased resistance to fungal wilts in transgenic eggplant expressing alfalfa glucanase gene. Physiology & Molecular Biology of Plants, 20(2), 143–150.

    Article  CAS  Google Scholar 

  • Sun, L., Zhang, H., Li, D., Huang, L., Hong, Y., Ding, X. S., Nelson, R. S., Zhou, X., & Song, F. (2013). Functions of rice NAC transcriptional factors, ONAC122 and ONAC131, in defense responses against Magnaporthe grisea. Plant Molecular Biology, 81(1–2), 41–56.

    Article  CAS  PubMed  Google Scholar 

  • Varkonyi-Gasic, E., Wu, R., Wood, M., Walton, E. F., & Hellens, R. P. (2007). Protocol: A highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods, 3(1), 12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, J. Y., Cai, Y., Gou, J. Y., Mao, Y. B., Xu, Y. H., Jiang, W. H., & Chen, X. Y. (2004). VdNEP, an elicitor from Verticillium dahliae, induces cotton plant wilting. Applied & Environmental Microbiology, 70(8), 4989–4995.

    Article  CAS  Google Scholar 

  • Wang, S. Q., Zhang, D. C., Li, P., Wang, X. D., Li, S. G., et al. (2005). Cloning and analysis of a new NBS-LRR resistance gene family in rice. Journal of Genetics & Genomics, 32(7), 704–711.

    CAS  Google Scholar 

  • Wang, X., Devaiah, S. P., Zhang, W., & Welti, R. (2006). Signaling functions of phosphatidic acid. Progress in Lipid Research, 45(3), 250–278.

    Article  CAS  PubMed  Google Scholar 

  • Wang, D., Pajerowska-Mukhtar, K., Culler, A. H., & Dong, X. N. (2007). Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Current Biology, 17(20), 1784–1790.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z., Guo, J. L., Zhang, F., Huang, Q. S., Huang, L. P., & Yang, Q. (2010). Differential expression analysis by cDNA-AFLP ofSolanum torvumuponVerticillium dahliaeinfection. Russian Journal of Plant Physiology, 57(5), 676–684.

    Article  CAS  Google Scholar 

  • Wang, Y., Li, L., Tang, S., Liu, J., Zhang, H., Zhi, H., Jia, G., & Diao, X. (2016). Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet. BMC Genetics, 17(1), 57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu, G., & Poethig, R. S. (2006). Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development, 133(18), 3539–3547.

    Article  CAS  PubMed  Google Scholar 

  • Xiang, L., Cai, C., Cheng, J., Wang, L., Wu, C., Shi, Y., Luo, J., He, L., Deng, Y., Zhang, X., Yuan, Y., & Cai, Y. (2018). Identification of circularRNAs and their targets in Gossypium under Verticillium wilt stress based on RNA-seq. Peerj, 6(3), e4500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu, Y., Liu, F., Zhu, S., & Li, X. (2018). The maize NBS-LRR gene ZmNBS25 enhances disease resistance in rice and Arabidopsis. Frontiers in Plant Science, 9, 1033.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamasaki, K., Kigawa, T., Seki, M., Shinozaki, K., & Yokoyama, S. (2012). DNA-binding domains of plant-specific transcription factors: Structure, function, and evolution. Trends in Plant Science, 18(5), 267–276.

    Article  PubMed  CAS  Google Scholar 

  • Yan, J., Zhao, C., Zhou, J., Yang, Y., Wang, P., Zhu, X., Tang, G., Bressan, R. A., & Zhu, J. K. (2016). The miR165/166 mediated regulatory module plays critical roles in ABA homeostasis and response in Arabidopsis thaliana. PLoS Genetics, 12(11), e1006416.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, J. H., Han, S. J., Yoon, E. K., & Lee, W. S. (2006). Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells. Nucleic Acids Research, 34(6), 1892–1899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, T., Xue, L., & An, L. (2007). Functional diversity of miRNA in plants. Plant Science, 172(3), 423–432.

    Article  CAS  Google Scholar 

  • Yang, L., Jue, D. W., Li, W., Zhang, R. J., Chen, M., & Yang, Q. (2013). Identification of miRNA from eggplant (Solanum melongena L.) by small RNA deep sequencing and their response to Verticillium dahliae infection. Plos One, 8(8), e72840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, L., Mu, X. Y., Liu, C., Cai, J. H., Shi, K., Zhu, W., et al. (2015). Overexpression of potato miR482e enhanced plant sensitivity to Verticillium dahliae infection. Journal of Integrative Plant Biology, 57(12), 1078–1088.

    Article  CAS  PubMed  Google Scholar 

  • Ye, J., Fang, L., Zheng, H., Zhang, Y., Chen, J., Zhang, Z., et al. (2006). WEGO: A web tool for plotting GO annotations. Nucleic Acids Research, 34(web server issue), W293–W297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J. Z. (2003). Overexpression analysis of plant transcription factors. Current Opinion in Plant Biology, 6(5), 430–440.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y. J., Wang, W., Chen, J., Liu, J. B., Xia, M. X., & Shen, F. F. (2015). Identification of miRNAs and their targets in cotton inoculated with Verticillium dahliae by high-throughput sequencing and degradome analysis. International Journal of Molecular Sciences, 16(7), 14749–14768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Wu, L., Wang, X., Chen, B., Zhao, J., & Cui, J. (2019). The cotton laccase gene GhLAC15 enhances Verticillium wilt resistance via an increase in defence-induced lignification and lignin components in the cell walls of plants. Molecular Plant Pathology, 20(3), 309–322.

    Article  CAS  PubMed  Google Scholar 

  • Zuo, K., Wang, J., Wu, W., Chai, Y., Sun, X., & Tang, K. (2005). Identification and characterization of differentially expressed ESTs of Gossypium barbadense infected by Verticillium dahliae with suppression subtractive hybridization. Molecular Biology, 39(2), 191–199.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the following projects: National Natural Science Foundation of China (31901582); Natural Science Foundation of Jiangsu Province (BK20180519); the Fundamental Research Funds for the Central Universities (KJQN202062); Priority Academic Program Development of Jiangsu Higher Education Institutions: Modern horticultural science (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjiao Zhu or Qing Yang.

Ethics declarations

Ethical approval

The authors bear all the ethical responsibilities of this manuscript.

Human and animal rights

This research does not include any animal and/or human trials.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Fig. S1

Phenotypic comparison between V. dahliae-inoculated eggplants and control eggplants A: uninoculated plant, B: plant inoculated with V. dahliae after 48 h. (PDF 43 kb)

Fig. S2

Agarose gel electrophoresis of amplification product of V. dahliae ITS gene in the eggplants 1, 2, 3: inoculated plants; C: uninoculated plant; P: positive control. (PDF 10 kb)

Fig. S3

Expression stability of candidate reference genes based on Genorm software (PDF 57 kb)

Table S1

(DOC 13 kb)

Table S2

(XLSX 10 kb)

Table S3

(XLSX 41 kb)

Table S4

(XLSX 16 kb)

Table S5

(XLSX 16 kb)

Table S6

(XLSX 18 kb)

Table S7

(XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Tao, N., Lin, Y. et al. Identification of miRNA targets in eggplant in response to Verticillium dahliae by degradome sequencing. Eur J Plant Pathol 160, 97–111 (2021). https://doi.org/10.1007/s10658-021-02217-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02217-8

Keywords

Navigation