Skip to main content
Log in

Shell evolution of kinetic, potential and binding energies of \(N = Z\) nuclei in sd shell in a deformed Woods–Saxon potential with the pairing correlation energies

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We discuss the evolution of single particle state (SPS) energies by the deformation within a deformed Woods–Saxon potential. Since the SPS energy (SPSE) is based on the concept of one-body potential, we decompose it into kinetic and potential energy, and consider the modification of total binding energy (TBE) beyond the one-body potential by the pairing correlations. Evolution of each energy is detailed numerically. The TBEs of \(N = Z\) nuclei in sd shell are obtained in terms of the \(\beta _2\) deformation by minimizing the TBE. Our results infer that a simple summation of the SPSE is not enough to explain experimental TBEs, so that we suggest how to properly obtain the TBE and the reasonable deformation beyond the deformed Woods–Saxon potential by including realistic pairing interactions by G-Matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I. Hamamoto, Phys. Rev. C 93, 054328 (2016)

    Article  ADS  Google Scholar 

  2. I. Hamamoto, Phys. Scripta 91, 023004 (2016)

    Article  ADS  Google Scholar 

  3. S.G. Nilsson, I. Ragnarsson, Shapes and Shells in Nuclear Structure (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  4. S. Cwiok et al., Comput. Phys. Commun. 46, 379–399 (1987)

    Article  ADS  Google Scholar 

  5. R. Noyarov, J. Phys. G 10, 539 (1984)

    Article  ADS  Google Scholar 

  6. Peter Ring, Peter Schuck, The Nuclear Many-Body Problem (Springer, Berlin Heidelberg, 1980)

    Book  Google Scholar 

  7. P. Moller, A.J. Sierk, T. Ichikawa, H. Sagawa, At. Data Nucl. Data Tables 109–110, 1–204 (2016)

    Article  ADS  Google Scholar 

  8. Kaiyuan Zhang et al., Phys. Rev. C 102, 024314 (2020)

    Article  ADS  Google Scholar 

  9. J. Damgaard et al., Nucl. Phys. A 135, 432 (1969)

    Article  ADS  Google Scholar 

  10. F. Perey, B. Buck, Nucl. Phys. 32, 353 (1962)

    Article  Google Scholar 

  11. M.A. Franey, P.J. Ellis, Phys. Rev. C 23, 787 (1981)

    Article  ADS  Google Scholar 

  12. S. Shlomo, G. Bertsch, Nucl. Phys. A 243, 507 (1975)

    Article  ADS  Google Scholar 

  13. W.Y. So et al., J. Korean. Phys. Soc. 74, 998 (2019)

    Article  ADS  Google Scholar 

  14. H. Eunja, C. Myung-Ki, H. Sagawa, Phys. Rev. C 99, 064304 (2019)

    Article  ADS  Google Scholar 

  15. E. Ha, M.-K. Cheoun, H. Sagawa, Phys. Rev. C 97, 064322 (2018)

    Article  ADS  Google Scholar 

  16. E. Ha, M.-K. Cheoun, H. Sagawa, Phys. Rev. C 97, 024320 (2018)

    Article  ADS  Google Scholar 

  17. B. Pritychenko et al., At. Data Nucl. Data Tables 107, 1 (2016)

    Article  ADS  Google Scholar 

  18. B. Pritychenko et al., At. Data Nucl. Data Tables 98, 798 (2016)

    Article  ADS  Google Scholar 

  19. S. Raman, C.W. Nestor Jr., P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001)

    Article  ADS  Google Scholar 

  20. G.A. Lalazissis, S. Raman, P. Ring, At. Data Nucl. Data Tables 71, 1 (1999)

    Article  ADS  Google Scholar 

  21. R.H. Spear, Phys. Rep. 73(5), 369 (1981)

    Article  ADS  Google Scholar 

  22. N.J. Stone, At. Data Nucl. Data tables 90, 75 (2005)

    Article  ADS  Google Scholar 

  23. T. Peach, U. Garg, Y.K. Gupta, J. Hoffman, J.T. Matta, D. Patel et al., Phys. Rev. C 93, 064325 (2016)

    Article  ADS  Google Scholar 

  24. H.T. Chen, A. Goswami, Phys. Lett. 24B, 257 (1967)

    Article  ADS  Google Scholar 

  25. H.H. Wolter, A. Faessler, P.U. Sauer, Phys. Lett. 31B, 516 (1970)

    Article  ADS  Google Scholar 

  26. A.L. Goodman, Phys. Rev. C 58, R3051 (1998)

    Article  ADS  Google Scholar 

  27. F. \(\check{\rm S}\)imkovic, C. C. Moustakidis, L. Pacearescu, A. Faessler, Phys. Rev. C 68, 054319 (2003)

  28. J. Engel, S. Pittel, M. Stoitsov, P. Vogel, J. Dukelsky, Phys. Rev. C 55, 1781 (1997)

    Article  ADS  Google Scholar 

  29. O. Civitarese, M. Reboiro, P. Vogel, Phys. Rev. C 56, 1840 (1997)

    Article  ADS  Google Scholar 

  30. J. Engel, K. Langanke, P. Vogel, Phys. Lett. B 389, 211 (1996)

    Article  ADS  Google Scholar 

  31. W. Satula, R. Wyss, Phys. Lett. B 393, 1 (1997)

    Article  ADS  Google Scholar 

  32. A. Gezerlis, G.F. Bertsch, Y.L. Luo, Phys. Rev. Lett. 106, 252502 (2011)

    Article  ADS  Google Scholar 

  33. H. Matsubara, A. Tamii, H. Nakada, J. Carter, M. Dozono, H. Fujita et al., Phys. Rev. Lett. 115, 102501 (2015)

    Article  ADS  Google Scholar 

  34. H. Sagawa, C.L. Bai, G. Colo, Phys. Scr. 91, 083011 (2016)

    Article  ADS  Google Scholar 

  35. S. Frauendorf, A.O. Miacchiavelli, Prog. Part. Nucl. Phys. 78, 24 (2014)

    Article  ADS  Google Scholar 

  36. M.K. Cheoun, A. Bobyk, A. Faessler, F. Šimkovic, G. Teneva, Nucl. Phys. A 561, 74 (1993)

    Article  ADS  Google Scholar 

  37. M. K. Cheoun, A. Bobyk, A. Faessler, F. Šimkovic, G. Teneva, ibid. 564, 329 (1993)

  38. M. K. Cheoun, A. Faessler, F. Šimkovic, G. Teneva, A. Bobyk, ibid. 587, 301 (1995)

  39. Meng Wang et al., J. Phys. G 41, 3 (2017)

    Google Scholar 

  40. Satoshi Takahara, Naoki Tajima, Yoshifumi R. Shimizu, Phys. Rev. C 86, 064323 (2012)

    Article  ADS  Google Scholar 

  41. Naoki Tajima, Yoshifumi R. Shimizu, Satoshi Takahara, Phys. Rev. C 82, 034316 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (Grant nos. NRF-2018R1D1A1B05048026, NRF-2020R1A2C3006177, NRF-2013M7A1A1075764).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eunja Ha or Myung-Ki Cheoun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, E., Kim, S. & Cheoun, MK. Shell evolution of kinetic, potential and binding energies of \(N = Z\) nuclei in sd shell in a deformed Woods–Saxon potential with the pairing correlation energies. J. Korean Phys. Soc. 78, 761–769 (2021). https://doi.org/10.1007/s40042-021-00142-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00142-x

Keywords

Navigation