Skip to main content

Advertisement

Log in

In Vivo Observation of Lidocaine-Encapsulated Polymyxin/Glycol Nanoparticles Wound Dressing for the Treatment and Care of Abdominal Pain Incision in Intensive Care Unit

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The developments of lidocaine chloride loaded nanoparticles are encouraging biomaterials, which could be used for wound healing applications for abdominal pain management. The current work presents the composition of wound dressings based on lidocaine chloride (LCH) (anesthetic drug)-loaded Polymyxin (PMN)/Glycol (GLY). The LCH nanocomposite (LCH@PMN/GLY) were fabricated by the LCH oxide solutions within the PMN/GLY matrix. The influences of different experimental limitations on PMN/GLY nanoparticles formations were examined. The PMN/GLY and LCH@PMN/GLY nanoparticle sizes were evaluated by high resolution-scanning electron microscopy (HR-SEM). Additionally, the antibacterial efficacy of PMN/GLY and LCH@PMN/GLY was developed for gram-positive and negative microorganisms. Moreover, we examined in vivo healing of skin wounds formed in mouse models over 20 days. In contrast to the untreated wounds, rapid healing was perceived in the LCH@PMN/GLY-treated wound with less damage. These findings indicate that LCH@PMN/GLY-based bandaging materials could be a potential innovative biomaterial for tissue repair and implantation and nursing care for wound healing applications for abdominal pain incision in intensive care unit (ICU) management in an animal model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mehrabi T, Mesgar AS, Mohammadi Z (2020) Bioactive glasses: a promising therapeutic ion release strategy for enhancing wound healing. ACS Biomater Sci Eng 6:5399–5430. https://doi.org/10.1021/acsbiomaterials.0c00528

    Article  CAS  PubMed  Google Scholar 

  2. Xiao M, Gao L, Chandrasekaran AR, Zhao J, Tang Q, Qu Z, Wang F, Li L, Yang Y, Zhang X, Wan Y, Pei H (2019) Bio-functional G-molecular hydrogels for accelerated wound healing. Mater Sci Eng C 105:110067. https://doi.org/10.1016/j.msec.2019.110067

    Article  CAS  Google Scholar 

  3. Yu B, He C, Wang W, Ren Y, Yang J, Guo S, Zheng Y, Shi X (2020) Asymmetric wettable composite wound dressing prepared by electrospinning with bioinspired micropatterning enhances diabetic wound healing. ACS Appl Biol Mater 3:5383–5394. https://doi.org/10.1021/acsabm.0c00695

    Article  CAS  Google Scholar 

  4. Son B, Lee S, Kim H, Kang H, Kim J, Youn H, Nam SY, Youn B (2019) Low dose radiation attenuates inflammation and promotes wound healing in a mouse burn model. J Dermatol Sci 96:81–89. https://doi.org/10.1016/j.jdermsci.2019.10.004

    Article  CAS  PubMed  Google Scholar 

  5. Schmidt CA, Murillo R, Heinzmann B, Laufer S, Wray V, Merfort I (2011) Structural and conformational analysis of proanthocyanidins from Parapiptadenia rigida and their wound-healing properties. J Nat Prod 74:1427–1436. https://doi.org/10.1021/np200158g

    Article  CAS  PubMed  Google Scholar 

  6. Bakshi MS (2017) Nanotoxicity in Systemic Circulation and Wound Healing. Chem Res Toxicol 30:1253–1274. https://doi.org/10.1021/acs.chemrestox.7b00068

    Article  CAS  PubMed  Google Scholar 

  7. Zhang X, Yin Z, Guo Y, Huang H, Zhou J, Wang L, Bai J, Fan Z (2020) A facile and large-scale synthesis of a PVA/chitosan/collagen hydrogel for wound healing. New J Chem 44:20776–20784. https://doi.org/10.1039/D0NJ04016A

    Article  CAS  Google Scholar 

  8. Chen Z, Hu Y, Li J, Zhang C, Gao F, Ma X, Zhang J, Fu C, Geng F (2019) A feasible biocompatible hydrogel film embedding Periplaneta americana extract for acute wound healing. Int J Pharm 571:118707. https://doi.org/10.1016/j.ijpharm.2019.118707

    Article  CAS  PubMed  Google Scholar 

  9. Nielsen ES, Garnås E, Jensen KJ, Hansen LH, Olsen PS, Ritz C, Krych L, Nielsen DS (2018) Lacto-fermented sauerkraut improves symptoms in IBS patients independent of product pasteurisation: a pilot study. Food Funct 9:5323–5335. https://doi.org/10.1039/C8FO00968F

    Article  CAS  PubMed  Google Scholar 

  10. Zhang S, Hou J, Yuan Q, Xin P, Cheng H, Gu Z, Wu J (2020) Arginine derivatives assist dopamine-hyaluronic acid hybrid hydrogels to have enhanced antioxidant activity for wound healing. Chem Eng J 392:123775

    Article  CAS  Google Scholar 

  11. Wang M, Hu G, Tian Y, Zhang Z, Song R (2016) Influence of wine-processing on the pharmacokinetics of anthraquinone aglycones and glycosides from rhubarb in hyperlipidemic hamsters. RSC Adv 6:24871–24879. https://doi.org/10.1039/C5RA27273D

    Article  CAS  Google Scholar 

  12. Mori da Cunha MGMC, Arts B, Hympanova L, Rynkevic R, Mackova K, Bosman AW, Dankers PYW, Deprest J (2020) Functional supramolecular bioactivated electrospun mesh improves tissue ingrowth in experimental abdominal wall reconstruction in rats. Acta Biomater 106:82–91. https://doi.org/10.1016/j.actbio.2020.01.041

    Article  CAS  PubMed  Google Scholar 

  13. Li J, Feng X, Liu B, Yu Y, Sun L, Liu T, Wang Y, Ding J, Chen X (2017) Polymer materials for prevention of postoperative adhesion. Acta Biomater. 61:21–40. https://doi.org/10.1016/j.actbio.2017.08.002

    Article  CAS  PubMed  Google Scholar 

  14. Hernández-Gascón B, Peña E, Melero H, Pascual G, Doblaré M, Ginebra MP, Bellón JM, Calvo B (2011) Mechanical behaviour of synthetic surgical meshes: finite element simulation of the herniated abdominal wall. Acta Biomater 7:3905–3913. https://doi.org/10.1016/j.actbio.2011.06.033

    Article  CAS  PubMed  Google Scholar 

  15. Peters MF, Choy AL, Pin C, Leishman DJ, Moisan A, Ewart L, Guzzie-Peck PJ, Sura R, Keller DA, Scott CW, Kolaja KL (2020) Developing in vitro assays to transform gastrointestinal safety assessment: potential for microphysiological systems. Lab Chip 20:1177–1190. https://doi.org/10.1039/C9LC01107B

    Article  CAS  PubMed  Google Scholar 

  16. Xian C, Gu Z, Liu G, Wu J (2020) Whole wheat flour coating with antioxidant property accelerates tissue remodeling for enhanced wound healing. Chin Chem Lett 31:1612–1615

    Article  CAS  Google Scholar 

  17. Bobde Y, Biswas S, Ghosh B (2020) Current trends in the development of HPMA-based block copolymeric nanoparticles for their application in drug delivery. Eur. Polym. J. 139:110018. https://doi.org/10.1016/j.eurpolymj.2020.110018

    Article  CAS  Google Scholar 

  18. Hamdan S, Pastar I, Drakulich S, Dikici E, Tomic-Canic M, Deo S, Daunert S (2017) Nanotechnology-driven therapeutic interventions in wound healing: potential uses and applications. ACS Cent Sci 3:163–175. https://doi.org/10.1021/acscentsci.6b00371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhong Z, Huang Y, Hu Q, He W, Duan B, Yan X, Yang Z, Liang W, Liu Z, Peng Z, Wang Y, Zhang L, Ye Q (2019) Elucidation of molecular pathways responsible for the accelerated wound healing induced by a novel fibrous chitin dressing. Biomater Sci 7:5247–5257. https://doi.org/10.1039/C9BM00404A

    Article  CAS  PubMed  Google Scholar 

  20. Sekhon UDS, Sen Gupta A (2018) Platelets and platelet-inspired biomaterials technologies in wound healing applications. ACS Biomater. Sci. Eng. 4:1176–1192. https://doi.org/10.1021/acsbiomaterials.7b00013

    Article  CAS  PubMed  Google Scholar 

  21. Wu R, Du D, Bo Y, Zhang M, Zhang L, Yan Y (2019) Hsp90α promotes the migration of iPSCs-derived keratinocyte to accelerate deep second-degree burn wound healing in mice. Biochem Biophys Res Commun 520:145–151. https://doi.org/10.1016/j.bbrc.2019.09.120

    Article  CAS  PubMed  Google Scholar 

  22. Thakur R, Chattopadhyay P, Mukherjee AK (2019) The wound healing potential of a pro-angiogenic peptide purified from Indian Russell’s viper (Daboia russelii) venom. Toxicon 165:78–82. https://doi.org/10.1016/j.toxicon.2019.04.009

    Article  CAS  PubMed  Google Scholar 

  23. Ghuman S, Ncube B, Finnie JF, McGaw LJ, Mfotie Njoya E, Coopoosamy RM, Van Staden J (2019) Antioxidant, anti-inflammatory and wound healing properties of medicinal plant extracts used to treat wounds and dermatological disorders. S Afr J Bot 126:232–240. https://doi.org/10.1016/j.sajb.2019.07.013

    Article  CAS  Google Scholar 

  24. Preman NK, Es SP, Prabhu A, Shaikh SB, Vipin C, Barki RR, Bhandary YP, Rekha PD, Johnson RP (2020) Bioresponsive supramolecular hydrogels for hemostasis, infection control and accelerated dermal wound healing. J Mater Chem B 8:8585–8598. https://doi.org/10.1039/D0TB01468K

    Article  CAS  PubMed  Google Scholar 

  25. Liu H, Wang C, Li C, Qin Y, Wang Z, Yang F, Li Z, Wang J (2018) A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv 8:7533–7549. https://doi.org/10.1039/C7RA13510F

    Article  CAS  Google Scholar 

  26. Chen M, Tian J, Liu Y, Cao H, Li R, Wang J, Wu J, Zhang Q (2019) Dynamic covalent constructed self-healing hydrogel for sequential delivery of antibacterial agent and growth factor in wound healing. Chem Eng J 373:413–424. https://doi.org/10.1016/j.cej.2019.05.043

    Article  CAS  Google Scholar 

  27. Muhamed I, Sproul EP, Ligler FS, Brown AC (2019) Fibrin nanoparticles coupled with keratinocyte growth factor enhance the dermal wound-healing rate. ACS Appl Mater Interfaces 11:3771–3780. https://doi.org/10.1021/acsami.8b21056

    Article  CAS  PubMed  Google Scholar 

  28. Sharifi S, Hajipour MJ, Gould L, Mahmoudi M (2020) Nanomedicine in healing chronic wounds: opportunities and challenges. Mol Pharm. https://doi.org/10.1021/acs.molpharmaceut.0c00346

    Article  PubMed  Google Scholar 

  29. Sun L, Huang Y, Bian Z, Petrosino J, Fan Z, Wang Y, Park KH, Yue T, Schmidt M, Galster S, Ma J, Zhu H, Zhang M (2016) Sundew-inspired adhesive hydrogels combined with adipose-derived stem cells for wound healing. ACS Appl Mater Interfaces 8:2423–2434. https://doi.org/10.1021/acsami.5b11811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim SH, Park J-W (2019) IDH2 deficiency impairs cutaneous wound healing via ROS-dependent apoptosis. Biochim Biophys Acta 1865:165523. https://doi.org/10.1016/j.bbadis.2019.07.017

    Article  CAS  Google Scholar 

  31. Jahan I, George E, Saxena N, Sen S (2019) Silver-nanoparticle-entrapped soft GelMA gels as prospective scaffolds for wound healing. ACS Appl Biol Mater 2:1802–1814. https://doi.org/10.1021/acsabm.8b00663

    Article  CAS  Google Scholar 

  32. Simoska O, Duay J, Stevenson KJ (2020) Electrochemical detection of multianalyte biomarkers in wound healing efficacy. ACS Sens 5:3547–3557. https://doi.org/10.1021/acssensors.0c01697

    Article  CAS  PubMed  Google Scholar 

  33. Shah SA, Sohail M, Khan S, Minhas MU, de Matas M, Sikstone V, Hussain Z, Abbasi M, Kousar M (2019) Biopolymer-based biomaterials for accelerated diabetic wound healing: a critical review. Int J Biol Macromol 139:975–993. https://doi.org/10.1016/j.ijbiomac.2019.08.007

    Article  CAS  PubMed  Google Scholar 

  34. Schmidt CA, Murillo R, Bruhn T, Bringmann G, Goettert M, Heinzmann B, Brecht V, Laufer SA, Merfort I (2010) Catechin Derivatives from Parapiptadenia rigida with in vitro wound-healing properties. J Nat Prod 73:2035–2041. https://doi.org/10.1021/np100523s

    Article  CAS  PubMed  Google Scholar 

  35. Deal HE, Brown AC, Daniele MA (2020) Microphysiological systems for the modeling of wound healing and evaluation of pro-healing therapies. J Mater Chem B 8:7062–7075. https://doi.org/10.1039/D0TB00544D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sponchioni M, Capasso Palmiero U, Moscatelli D (2019) Thermo-responsive polymers: applications of smart materials in drug delivery and tissue engineering. Mater Sci Eng C 102:589–605. https://doi.org/10.1016/j.msec.2019.04.069

    Article  CAS  Google Scholar 

  37. Shen T, Dai K, Yu Y, Wang J, Liu C (2020) Sulfated chitosan rescues dysfunctional macrophages and accelerates wound healing in diabetic mice. Acta Biomater. https://doi.org/10.1016/j.actbio.2020.09.035

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bao Z, Gu Z, Xu J, Zhao M, Liu G, Wu J (2020) Acid-responsive composite hydrogel platform with space-controllable stiffness and calcium supply for enhanced bone regeneration. Chem Eng J 396:125353

    Article  CAS  Google Scholar 

  39. Guo B, Ma PX (2014) Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci China Chem 57:490–500. https://doi.org/10.1007/s11426-014-5086-y

    Article  CAS  Google Scholar 

  40. Kalashnikova I, Das S, Seal S (2015) Nanomaterials for wound healing: scope and advancement. Nanomedicine (Lond) 10:2593–2612. https://doi.org/10.2217/NNM.15.82

    Article  CAS  Google Scholar 

  41. Memic A, Abudula T, Mohammed HS, Joshi Navare K, Colombani T, Bencherif SA (2019) Latest progress in electrospun nanofibers for wound healing applications. ACS Appl Biol Mater 2:952–969. https://doi.org/10.1021/acsabm.8b00637

    Article  CAS  Google Scholar 

  42. Kuhlmann M, Wigger-Alberti W, Mackensen YV, Ebbinghaus M, Williams R, Krause-Kyora F, Wolber R (2019) Wound healing characteristics of a novel wound healing ointment in an abrasive wound model: a randomised, intra-individual clinical investigation. Wound Med 24:24–32. https://doi.org/10.1016/j.wndm.2019.02.002

    Article  Google Scholar 

  43. Kong X, Fu J, Shao K, Wang L, Lan X, Shi J (2019) Biomimetic hydrogel for rapid and scar-free healing of skin wounds inspired by the healing process of oral mucosa. Acta Biomater 100:255–269. https://doi.org/10.1016/j.actbio.2019.10.011

    Article  CAS  PubMed  Google Scholar 

  44. Cheng C-C, Yang X-J, Fan W-L, Lee A-W, Lai J-Y (2020) Cytosine-functionalized supramolecular polymer-mediated cellular behavior and wound healing. Biomacromol 21:3857–3866. https://doi.org/10.1021/acs.biomac.0c00938

    Article  CAS  Google Scholar 

  45. Jayaramudu T, Ko H-U, Kim HC, Kim JW, Li Y, Kim J (2017) Transparent and semi-interpenetrating network P(vinyl alcohol)- P(Acrylic acid) hydrogels: pH responsive and electroactive application. Int J Smart Nano Mater 8:80–94. https://doi.org/10.1080/19475411.2017.1335247

    Article  Google Scholar 

  46. Pandit AH, Mazumdar N, Imtiyaz K, Rizvi MMA, Ahmad S (2019) Periodate-modified gum arabic cross-linked pva hydrogels: a promising approach toward photoprotection and sustained delivery of folic acid. ACS Omega 4:16026–16036. https://doi.org/10.1021/acsomega.9b02137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nugraheni A, Purnawati D, Rohmatillah A, Mahardika D, Kusumaatmaja A (2020) Swelling of PVA/Chitosan/TiO2 nanofibers membrane in different PH. Mater Sci Forum 990:220–224. https://doi.org/10.4028/www.scientific.net/MSF.990.220

    Article  Google Scholar 

  48. Mohamed Kasim MS, Sundar S, Rengan R (2018) Synthesis and structure of new binuclear ruthenium(II) arene benzil bis(benzoylhydrazone) complexes: investigation on antiproliferative activity and apoptosis induction. Inorg Chem Front 5:585–596. https://doi.org/10.1039/c7qi00761b

    Article  CAS  Google Scholar 

  49. Mohamed Subarkhan MK, Ren L, Xie B, Chen C, Wang YH (2019) Novel tetranuclear ruthenium(II) arene complexes showing potent cytotoxic and antimetastatic activity as well as low toxicity in vivo. Eur J Med Chem 179:246–256. https://doi.org/10.1016/j.ejmech.2019.06.061

    Article  CAS  PubMed  Google Scholar 

  50. Sathiya Kamatchi T, Mohamed Subarkhan MK, Ramesh R, Wang H, Małecki JG (2020) Investigation into antiproliferative activity and apoptosis mechanism of new arene Ru(ii) carbazole-based hydrazone complexes. Dalton Trans 49:11385–11395. https://doi.org/10.1039/D0DT01476A

    Article  CAS  PubMed  Google Scholar 

  51. Mohamed Subarkhan MK, Ramesh R, Liu Y (2016) Synthesis and molecular structure of arene ruthenium(II) benzhydrazone complexes: impact of substitution at the chelating ligand and arene moiety on antiproliferative activity. New J Chem. https://doi.org/10.1039/c6nj01936f

    Article  Google Scholar 

  52. Niu Y, Yang T, Ke R, Wang C (2019) Preparation and characterization of pH-responsive sodium alginate/humic acid/konjac hydrogel for L-ascorbic acid controlled release. Mater Express 9:563–569

    Article  CAS  Google Scholar 

  53. Huang J, Chen L, Yuan Q, Gu Z, Wu J (2019) Tofu-Based hybrid hydrogels with antioxidant and low immunogenicity activity for enhanced wound healing. J Biomed Nanotechnol 15:1371–1383

    Article  CAS  Google Scholar 

  54. Bao Z, Xian C, Yuan Q, Liu G, Wu J (2019) Natural polymer-based hydrogels with enhanced mechanical performances: preparation, structure, and property. Adv Healthc Mater 8:1900670

    Article  Google Scholar 

  55. Chouhan D, Dey N, Bhardwaj N, Mandal BB (2019) Emerging and innovative approaches for wound healing and skin regeneration: current status and advances. Biomaterials 216:119267. https://doi.org/10.1016/j.biomaterials.2019.119267

    Article  CAS  PubMed  Google Scholar 

  56. Li W, Wang Y, Qi Y, Zhong D, Xie T, Yao K, Yang S, Zhou M (2020) Cupriferous silver peroxysulfite superpyramids as a universal and long-lasting agent to eradicate multidrug-resistant bacteria and promote wound healing. ACS Appl Biol Mater. https://doi.org/10.1021/acsabm.0c00889

    Article  Google Scholar 

  57. Rameshbabu AP, Datta S, Bankoti K, Subramani E, Chaudhury K, Lalzawmliana V, Nandi SK, Dhara S (2018) Polycaprolactone nanofibers functionalized with placental derived extracellular matrix for stimulating wound healing activity. J Mater Chem B 6:6767–6780. https://doi.org/10.1039/C8TB01373J

    Article  CAS  PubMed  Google Scholar 

  58. Sun X, Wang X, Zhao Z, Chen J, Li C, Zhao G (2020) Paeoniflorin accelerates foot wound healing in diabetic rats though activating the Nrf2 pathway. Acta Histochem 122:151649. https://doi.org/10.1016/j.acthis.2020.151649

    Article  CAS  PubMed  Google Scholar 

  59. Yin M, Wang X, Yu Z, Wang Y, Wang X, Deng M, Zhao D, Ji S, Jia N, Zhang W (2020) γ-PGA hydrogel loaded with cell-free fat extract promotes the healing of diabetic wounds. J Mater Chem B 8:8395–8404. https://doi.org/10.1039/D0TB01190H

    Article  CAS  PubMed  Google Scholar 

  60. Nandi S, Sproul EP, Nellenbach K, Erb M, Gaffney L, Freytes DO, Brown AC (2019) Platelet-like particles dynamically stiffen fibrin matrices and improve wound healing outcomes. Biomater Sci 7:669–682. https://doi.org/10.1039/C8BM01201F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Han Y, Jiang Y, Li Y, Wang M, Fan T, Liu M, Ke Q, Xu H, Yi Z (2019) An aligned porous electrospun fibrous scaffold with embedded asiatic acid for accelerating diabetic wound healing. J Mater Chem B 7:6125–6138. https://doi.org/10.1039/C9TB01327J

    Article  CAS  PubMed  Google Scholar 

  62. Huang X, Li L-D, Lyu G-M, Shen B-Y, Han Y-F, Shi J-L, Teng J-L, Feng L, Si S-Y, Wu J-H, Liu Y-J, Sun L-D, Yan C-H (2018) Chitosan-coated cerium oxide nanocubes accelerate cutaneous wound healing by curtailing persistent inflammation. Inorg Chem Front 5:386–393. https://doi.org/10.1039/C7QI00707H

    Article  CAS  Google Scholar 

  63. Shanmugapriya K, Kang HW (2019) Engineering pharmaceutical nanocarriers for photodynamic therapy on wound healing: review. Mater Sci Eng C 105:110110. https://doi.org/10.1016/j.msec.2019.110110

    Article  CAS  Google Scholar 

  64. Milde F, Franco D, Ferrari A, Kurtcuoglu V, Poulikakos D, Koumoutsakos P (2012) Cell Image Velocimetry (CIV): boosting the automated quantification of cell migration in wound healing assays. Integr Biol 4:1437–1447. https://doi.org/10.1039/C2IB20113E

    Article  CAS  Google Scholar 

  65. Ayal G, Belay A, Kahaliw W (2019) Evaluation of wound healing and anti-inflammatory activity of the leaves of Calpurnia aurea (Ait) Benth (fabaceae) in mice. Wound Med. 25:100151. https://doi.org/10.1016/j.wndm.2019.100151

    Article  Google Scholar 

  66. Xu J, Xu JJ, Lin Q, Jiang L, Zhang D, Li Z, Ma B, Zhang C, Li L, Kai D, Yu H-D, Loh XJ (2020) Lignin-incorporated nanogel serving as an antioxidant biomaterial for wound healing. ACS Appl Biol Mater. https://doi.org/10.1021/acsabm.0c00858

    Article  Google Scholar 

  67. Gao W, Jin W, Li Y, Wan L, Wang C, Lin C, Chen X, Lei B, Mao C (2017) A highly bioactive bone extracellular matrix-biomimetic nanofibrous system with rapid angiogenesis promotes diabetic wound healing. J Mater Chem B 5:7285–7296. https://doi.org/10.1039/C7TB01484H

    Article  CAS  PubMed  Google Scholar 

  68. Alipour R, Khorshidi A, Shojaei AF, Mashayekhi F, Moghaddam MJM (2019) Skin wound healing acceleration by Ag nanoparticles embedded in PVA/PVP/Pectin/Mafenide acetate composite nanofibers. Polym. Test. 79:106022. https://doi.org/10.1016/j.polymertesting.2019.106022

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZP, JZ, and YM assisted with NP synthesis and characterization; ZJ, and YS assisted with molecular and biochemical analysis; WW assisted with data curation, formal analysis, and validation; LC assisted with supervised the research.

Corresponding author

Correspondence to Lili Chen.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical Approval and Consent to Participate

All animal experiments were approved by the Ethics Committee of the Emergency Intensive Care Unit, Wenling First People's Hospital, Wenling 317500, China in accordance with the guidelines on animal care and use (File No: 2019-10).

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Z., Zhu, J., Mao, Y. et al. In Vivo Observation of Lidocaine-Encapsulated Polymyxin/Glycol Nanoparticles Wound Dressing for the Treatment and Care of Abdominal Pain Incision in Intensive Care Unit. J Polym Environ 29, 3732–3743 (2021). https://doi.org/10.1007/s10924-021-02093-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02093-7

Keywords

Navigation