Skip to main content
Log in

Electro-elastic field of a piezoelectric quasicrystal medium containing two cylindrical inclusions

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Considering the piezoelectric effect, the electro-elastic field of an infinite one-dimensional quasicrystal medium with two circular cylindrical inclusions is derived under antiplane shear and inplane electric loading. The boundary value problem of the composite material with circular cylindrical inclusions is analytically solved by the use of the conformal mapping technique and analytical continuation theory. The stresses in the phonon and phason fields and the electric displacements are obtained explicitly in the form of a power series both for the matrix and the inclusions. Some typical examples are analyzed to show the effect of the geometric parameters, material properties, and electro-mechanical loading on the electro-elastic fields in the matrix, inclusions, and interfaces. The limiting cases of circular cavities and rigid circular inclusions have also been investigated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Shechtman, D., Blech, I., Gratias, D., Cahn, J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53(20), 1951–1953 (1984)

    Article  Google Scholar 

  2. Janot, C.: Quasicrystals: a primer. Clarendon Press, Oxford University Press (1993)

    MATH  Google Scholar 

  3. Louzguine-Luzgin, D.V., Inoue, A.: Formation and properties of quasicrystals. Ann. Rev. Mater. Rev. 38, 403–423 (2008)

    Article  Google Scholar 

  4. Chen, W.Q., Ma, Y.L., Ding, H.J.: On three-dimensional elastic problems of one-dimensional hexagonal quasicrystal bodies. Mech. Res. Commun. 31, 633–641 (2004)

    Article  MathSciNet  Google Scholar 

  5. Fan, T.Y., Li, X.-F., Sun, Y.F.: A moving screw dislocation in a one-dimensional hexagonal quasicrystal. Acta Phys. Sinica 8, 288–295 (1999)

    Google Scholar 

  6. Shi, W.C.: Collinear periodic cracks and/or rigid line inclusions of antiplane sliding mode in one-dimensional hexagonal quasicrystal. Appl. Math. Comput. 215, 1062–1067 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Gao, Y., Ricoeur, A., Zhang, L.L.: Plane problems of cubic quasicrystal media with an elliptic hole or a crack. Phys. Lett. A 375, 2775–1781 (2011)

    Article  Google Scholar 

  8. Sladek, J., Sladek, V., Atluri, S.N.: Path-independent integral in fracture mechanics of quasicrystals. Eng. Fract. Mech. 140, 61–71 (2015)

    Article  Google Scholar 

  9. Loboda, V., Komarov, O., Bilyi, D., Yuri, L.: An analytical approach to the analysis of an electrically permeable interface crack in a 1D piezoelectric quasicrystal. Acta Mech. 231, 3419–3433 (2020)

    Article  MathSciNet  Google Scholar 

  10. Li, L.H., Cui, X.W., Guo, J.H.: Interaction between a screw dislocation and an elliptical hole with two asymmetric cracks in a one-dimensional hexagonal quasicrystal with piezoelectric effect. Appl. Math. Mech. 41, 899–908 (2020)

    Article  Google Scholar 

  11. Rao, K.R.M., Rao, P.H., Chaitanya, B.S.K.: Piezoelectricity in quasicrystals: a group-theoretical study. Pramana 68, 481–487 (2007)

    Article  Google Scholar 

  12. Li, X.Y., Li, P.D., Wu, T.H.: Three-dimensional fundamental solutions for one-dimensional hexagonal quasicrystal with piezoelectric effect. Phys. Lett. A 378, 826–834 (2014)

    Article  MathSciNet  Google Scholar 

  13. Li, Y., Li, Y., Qin, Q.H., Yang, L.Z., Zhang, L.L., Gao, Y.: Axisymmetric bending analysis of functionally graded one-dimensional hexagonal piezoelectric quasi-crystal circular plate. Proc. R. Soc. A 476, 20200302 (2020)

    MathSciNet  Google Scholar 

  14. Yang, J., Li, X.: The anti-plane shear problem of two symmetric cracks originating from an elliptical hole in 1D hexagonal piezoelectric QCs. Adv. Mater. Res. 936, 127–135 (2014)

    Article  Google Scholar 

  15. Yu, J., Guo, J.H., Pan, E., Xing, Y.M.: General solutions of plane problem in one-dimensional quasicrystal piezoelectric material and its application on fracture mechanics. Appl. Mathe. Mech. 82, 17–24 (2015)

    MATH  Google Scholar 

  16. Fan, C.Y., Li, Y., Xu, G.T., Zhao, M.H.: Fundamental solutions and analysis of three-dimensional cracks in one-dimensional hexagonal piezoelectric quasicrystals. Mech. Res. Commun. 74, 39–44 (2016)

    Article  Google Scholar 

  17. Tupholme, G.E.: A non-uniformly loaded antiplane crack embedded in a half-space of a one-dimensional piezoelectric quasicrystal. Meccanica 53, 973–983 (2018)

    Article  MathSciNet  Google Scholar 

  18. Li, Y.-D., Bao, R.H., Chen, W.Q.: Axial shear fracture of a transversely isotropic piezoelectric quasicrystal cylinder: which field (phonon or phason) has more contribution? Europ. J. Mech./A Solids 71, 179–186 (2018)

    Article  MathSciNet  Google Scholar 

  19. Zhou, Y.-B., Li, X.-F.: A Yoffe-type moving crack in one-dimensional hexagonal piezoelectric quasicrystals. Appl. Math. Model. 65, 148–163 (2019)

    Article  MathSciNet  Google Scholar 

  20. Hu, K.Q., Jin, H., Yang, Z.J., Chen, X.: Interface crack between dissimilar one-dimensional hexagonal quasicrystals with piezoelectric effect. Acta Mech. 230, 2455–2474 (2019)

    Article  MathSciNet  Google Scholar 

  21. Zhao, M.H., Dang, H.Y., Fan, C.Y., Chen, Z.T.: Analysis of a three-dimensional arbitrary shaped interface crack in a one-dimensional hexagonal thermo-electro-elastic quasicrystal bi-material part 1: theoretical solution. Eng. Fract. Mech. 179, 59–78 (2017)

    Article  Google Scholar 

  22. Dang, H.Y., Zhao, M.H., Fan, C.Y., Chen, Z.T.: Analysis of a three-dimensional arbitrary shaped interface crack in a one-dimensional hexagonal thermo-electro-elastic quasicrystal bi-material part 2: numerical method. Eng. Fract. Mech. 180, 268–281 (2017)

    Article  Google Scholar 

  23. Honein, E., Honein, T., Herrmann, G.: On two circular inclusions in harmonic problems. Quart. Appl. Mathe. L 3, 479–499 (1992)

    Article  MathSciNet  Google Scholar 

  24. Wu, L.Z.: Interaction of two circular cylindrical inhomogeneities under anti-plane shear. Compo. Sci. Tech. 60, 2609–2615 (2000)

    Article  Google Scholar 

  25. Zou, Z., Li, S.: Stresses in an infinite medium with two similar circular cylindrical inclusions. Acta Mech. 156, 93–108 (2002)

    Article  Google Scholar 

  26. Ma, H.M., Gao, X.-L.: Eshelby’s tensors for plane strain and cylindrical inclusions based on a simplified strain gradient elasticity theory. Acta Mech. 211, 115–129 (2010)

    Article  Google Scholar 

  27. Deeg, W.F.: The analysis of dislocation, crack and inclusion problems in piezoelectric solids. Ph. D thesis, Stanford University, Stanford, CA (1980)

  28. Meguid, S.A., Zhong, Z.: On the elliptical inhomogeneity problem in piezoelectric materials under antiplane shear and inplane electric field. Int. J. Eng. Sci. 36, 329–344 (1998)

    Article  Google Scholar 

  29. Wu, L.Z., Kunio, F.: The electro-elastic field of the infinite piezoelectric medium with two piezoelectric circular cylindrical inclusions. Acta Mech. Sinica 18, 368–385 (2002)

    Article  Google Scholar 

  30. Yang, B.-H., Gao, C.-F., Noda, N.: Interactions between N circular cylindrical inclusions in a piezoelectric matrix. Acta Mech. 197, 31–42 (2008)

    Article  Google Scholar 

  31. He, L.H., Lim, C.W.: Electromechanical response of piezoelectric fiber composites with sliding interface under anti-plane deformations. Compos. Part B 34, 373–381 (2003)

    Article  Google Scholar 

  32. Wang, X., Pan, E., Roy, A.K.: Interaction between a screw dislocation and a piezoelectric circular inclusion with viscous interface. J. Mech. Mater. Struct. 3, 761–773 (2008)

    Article  Google Scholar 

  33. Zhang, Z.G., Ding, S.H., Li, X.: A spheroidal inclusion within a 1D hexagonal piezoelectric quasicrystal. Arch. Appl. Mech. 90, 1039–1058 (2020)

    Article  Google Scholar 

  34. Muskhelishvili, N.I.: Some basic problems of the mathematical theory of elasticity. Noordhoff, Groningen (1963)

    MATH  Google Scholar 

  35. Steif, P.S.: Shear stress concentration between holes. ASME J. Appl. Mech. 56, 719–721 (1989)

    Article  Google Scholar 

  36. Zhang, X., Hasebe, N.: Antiplane shear problems of perfect and partially damaged matrix-inclusion systems. Arch. Appl. Mech. 63, 195–209 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for its kind support of this research under Discovery Grant (RGPIN-2018-03804). The support from the National Key R&D Program of China (2017YFC0805100) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keqiang Hu or S. A. Meguid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, K., Meguid, S.A., Wang, L. et al. Electro-elastic field of a piezoelectric quasicrystal medium containing two cylindrical inclusions. Acta Mech 232, 2513–2533 (2021). https://doi.org/10.1007/s00707-021-02955-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-02955-0

Navigation