Skip to main content
Log in

Identification, Elucidation, and Toxicity Assessment of Nontarget Disinfection By-products from Fipronil Chlorination

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In the present study, fipronil degradation was evaluated in typical chlorination conditions (fipronil: 20 μg L−1; free chlorine concentration: 2 mg L−1; pH 7.5; 25 C). Fipronil was quickly degraded by chlorination with half-time life of 2.08 min, achieving 95% of degradation in 15 min of reaction. For identification and elucidation of its disinfection by-products, fipronil solutions (2.0 mg L−1) were chlorinated at different contact times. Six by-products were identified and their structural formulas were elucidated by high-resolution mass spectrometry. Lastly, the toxicity of the unreacted and chlorinated solutions was evaluated using in vitro, in vivo, and in silico assays. Unreacted and chlorinated solutions were toxic to Artemia salina nauplii with an increase on toxic effects after 24 h of reaction time. No estrogenicity and cytotoxicity were observed for the tested solutions using re-engineered bioluminescent yeast estrogen screen and colorimetric MTT assays, respectively. According to quantitative structure-activity relationship methodology, chlorination may produce a more mutagenic compound than the precursor fipronil. The generated disinfection by-products also proved to be developmental toxicant, although it was not possible to measure their relative potency in relation to the parent compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Badran, A. A., Fujiwara, M., Gatlin, D. M., & Mora, M. A. (2018). Lethal and sub-lethal effects of the insecticide fipronil on juvenile brown shrimp Farfantepenaeus aztecus. Scientific Reports, 8(1), 28–31. https://doi.org/10.1038/s41598-018-29104-3.

    Article  CAS  Google Scholar 

  • Albuquerque, A. F., Ribeiro, J. S., Kummrow, F., Nogueira, A. J. A., Montagner, C. C., & Umbuzeiro, G. A. (2016). Pesticides in Brazilian freshwaters: A critical review. Environmental Science: Processes and Impacts, 18(7), 779–787. https://doi.org/10.1039/c6em00268d.

    Article  CAS  Google Scholar 

  • Anandan, S., & Wu, J. J. (2015). Effective degradation of fipronil using combined catalytic ozonation processes. Ozone Science and Engineering, 37(2), 186–190. https://doi.org/10.1080/01919512.2014.944972.

    Article  CAS  Google Scholar 

  • Chamberlain, E. F., Wang, C., Shi, H., Adams, C. D., & Ma, Y. (2010). Oxidative removal and kinetics of fipronil in various oxidation systems for drinking water treatment. Journal of Agricultural and Food Chemistry, 58(11), 6895–6899. https://doi.org/10.1021/jf100872f.

    Article  CAS  Google Scholar 

  • Chamberlain, E., Shi, H., Wang, T., Ma, Y., Fulmer, A., & Adams, C. (2012). Comprehensive screening study of pesticide degradation via oxidation and hydrolysis. Journal of Agricultural and Food Chemistry, 60(1), 354–363. https://doi.org/10.1021/jf2033158.

    Article  CAS  Google Scholar 

  • da Costa Filho, B. M., da Silva, V. M., & Silva, J. de O., da Hora Machado, A. E., & Trovó, A. G. (2016). Coupling coagulation, flocculation and decantation with photo-Fenton process for treatment of industrial wastewater containing fipronil: Biodegradability and toxicity assessment. Journal of Environmental Management, 174, 71–78. https://doi.org/10.1016/j.jenvman.2016.03.019.

    Article  CAS  Google Scholar 

  • de Morais, C. R., Bonetti, A. M., Carvalho, S. M., de Rezende, A. A. A., Araujo, G. R., & Spanó, M. A. (2016). Assessment of the mutagenic, recombinogenic and carcinogenic potential of fipronil insecticide in somatic cells of Drosophila melanogaster. Chemosphere, 165, 342–351. https://doi.org/10.1016/j.chemosphere.2016.09.023.

    Article  CAS  Google Scholar 

  • de Oliveira, P. R., Bechara, G. H., Denardi, S. E., Oliveira, R. J., & Mathias, M. I. C. (2012a). Cytotoxicity of fipronil on mice liver cells. Microscopy Research and Technique, 75(1), 28–35. https://doi.org/10.1002/jemt.21018.

    Article  CAS  Google Scholar 

  • De Oliveira, P. R., Bechara, G. H., Denardi, S. E., Oliveira, R. J., & Mathias, M. I. C. (2012b). Genotoxic and mutagenic effects of fipronil on mice. Experimental and Toxicologic Pathology, 64(6), 569–573. https://doi.org/10.1016/j.etp.2010.11.015.

    Article  CAS  Google Scholar 

  • Deborde, M., & von Gunten, U. (2008). Reactions of chlorine with inorganic and organic compounds during water treatment—Kinetics and mechanisms: A critical review. Water Research, 42(1–2), 13–51. https://doi.org/10.1016/j.watres.2007.07.025.

    Article  CAS  Google Scholar 

  • Di Dea Bergamasco, A. M., Eldridge, M., Sanseverino, J., Sodré, F. F., Montagner, C. C., Pescara, I. C., et al. (2011). Bioluminescent yeast estrogen assay (BLYES) as a sensitive tool to monitor surface and drinking water for estrogenicity. Journal of Environmental Monitoring, 13(11), 3288–3293. https://doi.org/10.1039/c1em10464k.

    Article  CAS  Google Scholar 

  • Dodd, M. C., & Huang, C. H. (2004). Transformation of the antibacterial agent sulfamethoxazole in reactions with chlorine: Kinetics, mechanisms, and pathways. Environmental Science and Technology, 38(21), 5607–5615. https://doi.org/10.1021/es035225z.

    Article  CAS  Google Scholar 

  • Egorova, O. V., Ilyushina, N. A., & Rakitskii, V. N. (2020). Mutagenicity evaluation of pesticide analogs using standard and 6-well miniaturized bacterial reverse mutation tests. Toxicology In Vitro, 69(June), 105006. https://doi.org/10.1016/j.tiv.2020.105006.

    Article  CAS  Google Scholar 

  • Eldridge, M. L., França, D. D., Montagner, C. C., Quináglia, G. A., Sayler, G., Jardim, W. F., & Umbuzeiro, G. A. (2015). Comparison of two yeast bioluminescent assays applied to water monitoring of estrogenic activity. Applied Research in Toxicology, 1(1), 1–8.

    Google Scholar 

  • European Chemicals Agency. (n.d.). 2,6-dichloro-4-trifluoromethylaniline ECHA. https://echa.europa.eu/substance-information/-/substanceinfo/100.101.536

  • Gilliom, R. J., Barbash, J. E., Crawford, C. G., Hamilton, P. a., Martin, J. D., Nakagaki, N., et al. (2006). The quality of our nation’s water-Pesticides in the nation’s streams and groundwater, 1992–2001. Circular 1291. Virgínia: U.S. Geological Survey Circular. http://pubs.usgs.gov/circ/2005/1291/pdf/circ1291.pdf

  • Girgis, S. M., & Yassa, V. F. (2013). Evaluation of the potential genotoxic and mutagenic effects of fipronil in rats. J. Mediterr. Ecol., 12, 46–52.

    Google Scholar 

  • Gomes Júnior, O., Borges Neto, W., Machado, A. E. H., Daniel, D., & Trovó, A. G. (2017). Optimization of fipronil degradation by heterogeneous photocatalysis: Identification of transformation products and toxicity assessment. Water Research, 110, 133–140. https://doi.org/10.1016/j.watres.2016.12.017.

    Article  CAS  Google Scholar 

  • Hainzl, D., & Casida, J. E. (1996). Fipronil insecticide: Novel photochemical desulfinylation with retention of neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 93(23), 12764–12767. https://doi.org/10.1073/pnas.93.23.12764.

    Article  CAS  Google Scholar 

  • IBAMA. (2014). Boletim de Comercialização de Agrotóxicos e Afins. https://www.icict.fiocruz.br/sites/www.icict.fiocruz.br/files/IBAMA_boletim de comercializacao_2000_2012.pdf. Accessed 25 Feb 2014

  • ISO 10993-5:2009 (2009). Biological evaluation of medical devices—Part 5: Tests for in vitro cytotoxicity (Vol. 3). Switzerland.

  • Kamoshita, M., Kosaka, K., Endo, O., Asami, M., & Aizawa, T. (2010). Mutagenic activities of a chlorination by-product of butamifos, its structural isomer, and their related compounds. Chemosphere, 78(4), 482–487. https://doi.org/10.1016/j.chemosphere.2009.10.002.

    Article  CAS  Google Scholar 

  • Kishida, M., Kumabe, T., Takanashi, H., Nakajima, T., Ohki, A., Miyake, Y., & Kameya, T. (2010). Chlorination by-products of fenitrothion. Water Science and Technology, 62(1), 85–91. https://doi.org/10.2166/wst.2010.264.

    Article  CAS  Google Scholar 

  • Kojima, M., Fukunaga, K., Sasaki, M., Nakamura, M., Tsuji, M., & Nishiyama, T. (2005). Evaluation of estrogenic activities of pesticides using an in vitro reporter gene assay. International Journal of Environmental Health Research, 15(4), 271–280. https://doi.org/10.1080/09603120500155765.

    Article  CAS  Google Scholar 

  • Kurz, M. H. S., Martel, S., Gonçalves, F. F., Prestes, O. D., Martins, M. L., Zanella, R., & Adaime, M. B. (2013). Development of a fast method for the determination of the insecticide fipronil and its metabolites in environmental waters by SPE and GC-ECD. Journal of the Brazilian Chemical Society, 24(4), 631–638. https://doi.org/10.5935/0103-5053.20130078.

    Article  CAS  Google Scholar 

  • Li, M., Li, P., Wang, L., Feng, M., & Han, L. (2015). Determination and dissipation of fipronil and its metabolites in peanut and soil. Journal of Agricultural and Food Chemistry, 63(18), 4435–4443. https://doi.org/10.1021/jf5054589.

    Article  CAS  Google Scholar 

  • Lilia, A. (2003). Reviews of environmental contamination and toxicology. (G. W. Ware, Ed.) (Vol. 176). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4899-7283-5

  • Liu, Y., Duan, J., Li, W., Lai, Q., Saint, C. P., & Mulcahy, D. (2015). Determination of volatile disinfection byproducts in water by gas chromatography–triple quadrupole mass spectrometry. Analytical Letters, 48(1), 188–203. https://doi.org/10.1080/00032719.2014.930873.

    Article  CAS  Google Scholar 

  • Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., et al. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment, 473–474, 619–641. https://doi.org/10.1016/j.scitotenv.2013.12.065.

    Article  CAS  Google Scholar 

  • Martin, T. (2016). User’s guide for T.E.S.T. (version 4.2). In United States Environmental Protection Agency (p. 63). Cincinnati, Ohio. https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test%0AUser’s

  • Mianjy, J. G., & Niknafs, B. H. (2013). Photodegradation of fipronil in natural water by high intensity UV light under laboratory conditions. Asian Journal of Chemistry, 25(4), 2284–2288.

    Article  CAS  Google Scholar 

  • Ngim, K. K., Mabury, S. A., & Crosby, D. G. (2000). Elucidation of fipronil photodegradation pathways. Journal of Agricultural and Food Chemistry, 48(10), 4661–4665. https://doi.org/10.1021/jf9913007.

    Article  CAS  Google Scholar 

  • Overmyer, J. P., Rouse, D. R., Avants, J. K., Garrison, A. W., Delorenzo, M. E., Chung, K. W., et al. (2007). Toxicity of fipronil and its enantiomers to marine and freshwater non-targets. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 42(5), 471–480. https://doi.org/10.1080/03601230701391823.

    Article  CAS  Google Scholar 

  • Park, H., Lee, J. Y., Park, S., Song, G., & Lim, W. (2020). Developmental toxicity of fipronil in early development of zebrafish (Danio rerio) larvae: Disrupted vascular formation with angiogenic failure and inhibited neurogenesis. Journal of Hazardous Materials (Vol. 385). Elsevier B.V. https://doi.org/10.1016/j.jhazmat.2019.121531

  • Poppenga, R. H., & Oehme, F. W. (2010). Pesticide use and associated morbidity and mortality in veterinary medicine. Hayes’ Handbook of Pesticide Toxicology (Third Edit., Vol. Volume 1). Elsevier Inc. https://doi.org/10.1016/B978-0-12-374367-1.00007-0

  • Raveton, M., Aajoud, A., Willison, J. C., Aouadi, H., Tissut, M., & Ravanel, P. (2006). Phototransformation of the insecticide fipronil: Identification of novel photoproducts and evidence for an alternative pathway of photodegradation. Environmental Science and Technology, 40(13), 4151–4157. https://doi.org/10.1021/es0523946.

    Article  CAS  Google Scholar 

  • Romero, A., Ramos, E., Ares, I., Castellano, V., Martínez, M., Martínez-Larrañaga, M. R., et al. (2016). Fipronil sulfone induced higher cytotoxicity than fipronil in SH-SY5Y cells: Protection by antioxidants. Toxicology Letters, 252, 42–49. https://doi.org/10.1016/j.toxlet.2016.04.005.

    Article  CAS  Google Scholar 

  • Sanseverino, J., Gupta, R. K., Layton, A. C., Patterson, S. S., Ripp, S. A., Saidak, L., et al. (2005). Use of Saccharomyces cerevisiae BLYES expressing bacterial bioluminescence for rapid, sensitive detection of estrogenic compounds. Applied and Environmental Microbiology, 71(8), 4455–4460. https://doi.org/10.1128/AEM.71.8.4455.

    Article  CAS  Google Scholar 

  • Sanseverino, J., Eldridge, M. L., Layton, A. C., Easter, J. P., Yarbrough, J., Schultz, T. W., & Sayler, G. S. (2009). Screening of potentially hormonally active chemicals using bioluminescent yeast bioreporters. Toxicological Sciences, 107(1), 122–134. https://doi.org/10.1093/toxsci/kfn229.

    Article  CAS  Google Scholar 

  • Šefčíková, Z., Babeľová, J., Čikoš, Š., Kovaříková, V., Burkuš, J., Špirková, A., et al. (2018). Fipronil causes toxicity in mouse preimplantation embryos. Toxicology, 410(July), 214–221. https://doi.org/10.1016/j.tox.2018.08.008.

    Article  CAS  Google Scholar 

  • Shi, L., Chen, L., Wan, Y., Zeng, H., & Xia, W. (2020). Spatial variation of fipronil and its derivatives in tap water and ground water from China and the fate of them during drinking water treatment in Wuhan, central China. Chemosphere, 251, 126385. https://doi.org/10.1016/j.chemosphere.2020.126385.

    Article  CAS  Google Scholar 

  • Stehr, C. M., Linbo, T. L., Incardona, J. P., & Scholz, N. L. (2006). The developmental neurotoxicity of fipronil: Notochord degeneration and locomotor defects in zebrafish embryos and larvae. Toxicological Sciences, 92(1), 270–278. https://doi.org/10.1093/toxsci/kfj185.

    Article  CAS  Google Scholar 

  • Supowit, S. D., Sadaria, A. M., Reyes, E. J., & Halden, R. U. (2016). Mass balance of fipronil and total toxicity of fipronil-related compounds in process streams during conventional wastewater and wetland treatment. Environmental Science and Technology, 50(3), 1519–1526. https://doi.org/10.1021/acs.est.5b04516.

    Article  CAS  Google Scholar 

  • Tawk, A., Deborde, M., Labanowski, J., & Gallard, H. (2015). Chlorination of the beta-triketone herbicides tembotrione and sulcotrione: Kinetic and mechanistic study, transformation products identification and toxicity. Water Research, 76, 132–142. https://doi.org/10.1016/j.watres.2015.02.060.

    Article  CAS  Google Scholar 

  • U.S. EPA (2003) U.S. EPA-Title 40: Protection of environment; Part 136–Guidelines establishing test procedures for the analysis of pollutants. Water Pollution Control.

  • U.S. EPA (2016) Definition and procedure for the determination of the method detection limit, revision 2: EPA 821-R - 16-006.

  • Vanhaecke, P., & Persoone, G. (1981). Report on an intercalibration exercise on a short-term standard toxicity test with Artemia nauplii (Arc-test). INSERM, 106, 359–376.

    Google Scholar 

  • Vanhaecke, P., Persoone, G., Claus, C., & Sorgeloos, P. (1981). Proposal for a short-term toxicity test with Artemia nauplii. Ecotoxicology and Environmental Safety, 5(3), 382–387. https://doi.org/10.1016/0147-6513(81)90012-9.

    Article  CAS  Google Scholar 

  • World Health Organisation. (2017). Principles and practices of drinking-water chlorination: A guide to strengthening chlorination practices in small-to medium-sized water supplies: World Health Organization, Regional Office for South-East Asia. http://www.searo.who.int/entity/water_sanitation/documents/chlorination_guide_presentation.pdf?ua=1

  • Wu, H., Gao, C., Guo, Y., Zhang, Y., Zhang, J., & Ma, E. (2014). Acute toxicity and sublethal effects of fipronil on detoxification enzymes in juvenile zebrafish (Danio rerio). Pesticide Biochemistry and Physiology, 115, 9–14. https://doi.org/10.1016/j.pestbp.2014.07.010.

    Article  CAS  Google Scholar 

  • Wu, J., Lu, J., Lu, H., Lin, Y., & Chris Wilson, P. (2015). Occurrence and ecological risks from fipronil in aquatic environments located within residential landscapes. Science of the Total Environment, 518–519, 139–147. https://doi.org/10.1016/j.scitotenv.2014.12.103.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Laboratório Brasileiro de Controle de Dopagem (LBCD) – Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil for providing its infrastructure and know-how and Laboratório Multiusuário de Proteômica (LMU-ProtBio), from Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, MG, Brazil for providing the required equipment and technical expertise for sample processing and analyses. Finally, we would like to thank Dr. Jason Guy Taylor for reviewing the manuscript for its English usage.

Availability of Data and Material

All relevant data are available on the supplementary data.

Code Availability

Not applicable.

Funding

This work was financially supported by the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG – TEC-APQ-03205-16); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); and Universidade Federal de Ouro Preto.

Author information

Authors and Affiliations

Authors

Contributions

All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version. Specifically, the authors’ contribution can be summarized as follows:

André Luis Corrêa de Barrosa: conceptualization; methodology; formal analysis; investigation; and writing—original draft preparation.

Daniel Aparecido da Silva Rodriguesb: methodology; investigation; and writing—review and editing preparation.

Camila Cristina Rodrigues Ferreira da Cunhab: methodology; investigation; and writing—review and editing preparation.

Silvana de Queiroz Silvac: methodology; and investigation.

Robson José de Cássia Franco Afonsod: conceptualization; supervision; project administration; and funding acquisition.

Corresponding author

Correspondence to André Luis Corrêa de Barros.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 290 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Barros, A.L.C., da Silva Rodrigues, D.A., da Cunha, C.C.R.F. et al. Identification, Elucidation, and Toxicity Assessment of Nontarget Disinfection By-products from Fipronil Chlorination. Water Air Soil Pollut 232, 156 (2021). https://doi.org/10.1007/s11270-021-05102-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05102-6

Keywords

Navigation