Skip to main content
Log in

QTL analysis of crown gall disease resistance in apple: first plant R gene candidates effective against Rhizobium rhizogenes (Ti)

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

In apple (Malus spp.), crown gall disease, caused by the bacterial pathogens Rhizobium radiobacter (Ti) and R. rhizogenes (Ti), can be severe. To control the disease, breeding of apple rootstocks that exhibit crown gall resistance is a promising approach. In this study, we used a full-sib F1 population derived from a ‘JM7’ (susceptible) × Sanashi 63 (resistant) cross to identify quantitative trait loci (QTLs) that control resistance to tumour-inducing Rhizobium isolates found in apple production areas in Japan. Three stable QTLs, associated with a wide range of crown gall resistances, were identified in three linkage groups (LGs). QTLs for resistance to isolates Peach CG8331, Nagano 1 and Nagano 2 co-localised at the middle of LG 2 in Sanashi 63, where the crown gall resistance gene Cg (renamed as Rrr1 in this study) was previously identified. Similarly, in ‘JM7’, QTLs were identified on LG 11 for resistance to isolates ARAT-001, ARAT-002 and Kazuno 2, and on LG 15 for resistance to isolate ARAT-001. Fine-mapping of Rrr1 and nucleotide sequencing of a contig obtained from two bacterial artificial chromosome (BAC) clones delimited the Rrr1 gene to a region spanning 217 kb. In silico gene prediction from the region identified four genes encoding the Toll-interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat (TIR-NBS-LRR) class plant resistance genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data generated or analysed during this study are included in this published article (and its supplementary information files) or in public database.

References

  • Alconero R (1980) Crown gall of peaches from Maryland, South Carolina, and Tennessee and problems with biological control. Plant Dis 64:835–838

    Article  Google Scholar 

  • Baba T et al (2000) Construction and characterization of rice genomic libraries: PAC library of Japonica variety, Nipponbare and BAC library of Indica variety, Kasalath. Bull Natl Inst Agrobiol Resour 14:41–52

    CAS  Google Scholar 

  • Burr TJ, Reid CL, Katz BH, Tagliati ME, Bazzi C, Breth D (1993) Failure of Agrobacterium radiobacter strain K84 to control crown gall on raspberry. HortScience 28:1017–1019

    Article  Google Scholar 

  • Bus VGM, Chagné D, Bassett HCM, Bowatte D, Calenge F, Celton JM, Durel CE, Malone MT, Patocchi A, Ranatunga AC, Rikkerink EHA, Tustin DS, Zhou J, Gardiner SE (2008) Genome mapping of three major resistance genes to woolly apple aphid (Eriosoma lanigerum Hausm.). Tree Genet Genomes 4:223–236

    Article  Google Scholar 

  • Celton JM, Tustin DS, Chagné D, Gardiner SE (2009) Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genet Genomes 5:93–107

    Article  Google Scholar 

  • Charrier A, Vergne E, Dousset N, Richer A, Petiteau A, Chevreau E (2019) Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR-Cas9 system. Front Plant Sci 10:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, Schijlen E, van de Geest H, Bianco L, Micheletti D, Velasco R, di Pierro EA, Gouzy J, Rees DJG, Guérif P, Muranty H, Durel CE, Laurens F, Lespinasse Y, Gaillard S, Aubourg S, Quesneville H, Weigel D, van de Weg E, Troggio M, Bucher E (2017) High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet 49:1099–1106

    Article  PubMed  CAS  Google Scholar 

  • Enoki H, Takeuchi Y (2018) New genotyping technology, GRAS-Di, using next generation sequencer. Plant & Animal Genome Conference XXVI, abstr. pp0153

  • Escobar MA, Dandekar AM (2003) Agrobacterium tumefaciens as an agent of disease. Trends Plant Sci 8:380–386

    Article  PubMed  CAS  Google Scholar 

  • Fahrentrapp J, Broggini GAL, Kellerhals M, Peil A, Richter K, Zini E, Gessler C (2013) A candidate gene for fire blight resistance in Malus × robusta 5 is coding for a CC-NBS-LRR. Tree Genet Genomes 9:237–251

    Article  Google Scholar 

  • Fazio G, Wan YZ, Kviklys D, Romero L, Adams R, Strickland D, Robinson T (2014) Dw2, a new dwarfing locus in apple rootstocks and its relationship to induction of early bearing in apple scions. J Amer Soc Hort Sci 139:87–98

    Article  Google Scholar 

  • Foster TM, Celton JM, Chagne D, Tustin SD, Gardiner SE (2015) Two quantitative trait loci, Dw1 and Dw2, are primarily responsible for rootstock-induced dwarfing in apple. Hortic Res 2:15001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic-linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harrison N, Harrison RJ, Barber-Perez N, Cascant-Lopez E, Cobo-Medina M, Lipska M, Conde-Ruiz R, Brain P, Gregory PJ, Fernandez-Fernandez F (2016) A new three-locus model for rootstock-induced dwarfing in apple revealed by genetic mapping of root bark percentage. J Exp Bot 67:1871–1881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuczmog A, Galambos A, Horvath S, Matai A, Kozma P, Szegedi E, Putnoky P (2012) Mapping of crown gall resistance locus Rcg1 in grapevine. Theor Appl Genet 125:1565–1574

    Article  PubMed  CAS  Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus x domestica Borkh.). Mol Breed 10:217–241

    Article  CAS  Google Scholar 

  • Miki Y, Yoshida K, Enoki H, Komura S, Suzuki K, Inamori M, Nishijima R, Takumi S (2020) GRAS-Di system facilitates high-density genetic map construction and QTL identification in recombinant inbred lines of the wheat progenitor Aegilops tauschii. Sci Rep 10:21455

    Article  PubMed  PubMed Central  Google Scholar 

  • Montanari S et al (2015) Genetic mapping of Cacopsylla pyri resistance in an interspecific pear (Pyrus spp.) population. Tree Genet Genomes 11:74

    Article  Google Scholar 

  • Moore LW, Burr TJ (2014) Crown gall. In: Sutton TB et al (eds) Compendium of apple and pear diseases and pests, 2nd edn. APS Publications, pp 93-94

  • Moore LW, Warren G (1979) Agrobacterium radiobacter strain 84 and biological control of crown gall. Annu Rev Phytopathol 17:163–179

    Article  Google Scholar 

  • Moriya S, Iwanami H, Takahashi S, Kotoda N, Suzaki K, Abe K (2008) Evaluation and inheritance of crown gall resistance in apple rootstocks. J Japan Soc Hort Sci 77:236–241

    Article  Google Scholar 

  • Moriya S, Iwanami H, Takahashi S, Kotoda N, Suzaki K, Yamamoto T, Abe K (2010) Genetic mapping of the crown gall resistance gene of the wild apple Malus sieboldii. Tree Genet Genomes 6:195–203

    Article  Google Scholar 

  • Moriya S, Iwanami H, Kotoda N, Haji T, Okada K, Terakami S, Mimida N, Yamamoto T, Abe K (2012) Aligned genetic linkage maps of apple rootstock cultivar ‘JM7’ and Malus sieboldii ‘Sanashi 63’ constructed with novel EST-SSRs. Tree Genet Genomes 8:709–723

    Article  Google Scholar 

  • Moriya S, Iwanami H, Haji T, Okada K, Yamada M, Yamamoto T, Abe K (2015) Identification and genetic characterization of a quantitative trait locus for adventitious rooting from apple hardwood cuttings. Tree Genet Genomes 11:59

    Article  Google Scholar 

  • Moriya S, Kunihisa M, Okada K, Shimizu T, Honda C, Yamamoto T, Muranty H, Denancé C, Katayose Y, Iwata H, Abe K (2017) Allelic composition of MdMYB1 drives red skin color intensity in apple (Malus x domestica Borkh.) and its application to breeding. Euphytica 213:78

    Article  Google Scholar 

  • Nekoduka S, Kawamura T, Nakatani F, Sasaki H, Onoda K (2001) Occurrence of crown gall on apple rootstock ‘JM’ strain. Ann Rept Plant Prot North Japan 52:105–108

    Google Scholar 

  • Nishitani C, Hirai N, Komori S, Wada M, Okada K, Osakabe K, Yamamoto T, Osakabe Y (2016) Efficient genome editing in apple using a CRISPR/Cas9 system. Sci Rep 6:31481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osakabe Y, Liang Z, Ren C, Nishitani C, Osakabe K, Wada M, Komori S, Malnoy M, Velasco R, Poli M, Jung M-H, Koo O-J, Viola R, Kanchiswamy CN (2018) CRISPR–Cas9-mediated genome editing in apple and grapevine. Nat Protoc 13:2844–2863

    Article  PubMed  CAS  Google Scholar 

  • Perazzolli M, Malacarne G, Baldo A, Righetti L, Bailey A, Fontana P, Velasco R, Malnoy M (2014) Characterization of resistance gene analogues (RGAs) in apple (Malus × domestica Borkh.) and their evolutionary history of the Rosaceae family. PLoS One 9:e83844

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7:e37135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pilcher RLR, Celton JM, Gardiner SE, Tustin DS (2008) Genetic markers linked to the dwarfing trait of apple rootstock ‘Malling 9’. J Amer Soc Hort Sci 133:100–106

    Article  CAS  Google Scholar 

  • Salamov AA, Solovyev VV (2000) Ab initio gene finding in Drosophila genomic DNA. Genome Res 10:516–522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shirasawa K, Hirakawa H, Isobe S (2016) Analytical workflow of double-digest restriction site-associated DNA sequencing based on empirical and in silico optimization in tomato. DNA Res 23:145–153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shirasawa K, Isuzugawa K, Ikenaga M, Saito Y, Yamamoto T, Hirakawa H, Isobe S (2017) The genome sequence of sweet cherry (Prunus avium) for use in genomics-assisted breeding. DNA Res 24:499–508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soejima J et al (2010) New dwarfing apple rootstocks ‘JM1’, ‘JM7’ and ‘JM8’. Bull Natl Ins Fruit Tree Sci 11:1–16

    Google Scholar 

  • Terakami S, Moriya S, Adachi Y, Kunihisa M, Nishitani C, Saito T, Abe K, Yamamoto T (2016) Fine mapping of the gene for susceptibility of black spot disease in Japanese pear (Pyrus pyrifolia Nakai). Breed Sci 66:271–280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Ooijen JW (2006) JoinMap 4 Software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V, Wageningen, Netherlands

    Google Scholar 

  • van Ooijen JW (2009) MapQTL 6 Software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma B.V, Wageningen, Netherlands

    Google Scholar 

  • Wang AD, Aldwinckle H, Forsline P, Main D, Fazio G, Brown S, Xu KN (2012) EST contig-based SSR linkage maps for Malus x domestica cv Royal Gala and an apple scab resistant accession of M. sieversii, the progenitor species of domestic apple. Mol Breed 29:379–397

    Article  CAS  Google Scholar 

  • Warton DI, Hui FKC (2011) The arcsine is asinine: the analysis of proportions in ecology. Ecology 92:3–10

    Article  PubMed  Google Scholar 

  • Yagi M, Shirasawa K, Waki T, Kume T, Isobe S, Tanase K, Yamaguchi H (2017) Construction of an SSR and RAD marker-based genetic linkage map for carnation (Dianthus caryophyllus L.). Plant Mol Biol Report 35:110–117

    Article  CAS  Google Scholar 

  • Young M, Kuykendall LD, Martinez-Romero E, Kerr A, Sawada H (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51:89–103

    Article  PubMed  CAS  Google Scholar 

  • Zdobnov EM, Apweiler R (2001) InterProScan–an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848

    Article  PubMed  CAS  Google Scholar 

Download references

Code availability

Not applicable.

Funding

A part of this work was supported by JSPS KAKENHI Grant Number 20K06039.

Author information

Authors and Affiliations

Authors

Contributions

S.M., H.I. and K.A. conceived and designed the study. S.M., H.I., T.H., K.O., T. S., K.S. and K.A. performed phenotyping. S.M., N.K., Y.K. and J.W. constructed the BAC library and performed screening of clones. S.M., N.K. and T.Y. performed genotyping and in silico gene prediction. S.M. analysed data and drafted the manuscript. All authors revised and approved the manuscript.

Corresponding author

Correspondence to Shigeki Moriya.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Data Archiving Statement

The nucleotide sequence of the BAC contig was deposited to DDBJ under the accession number LC592177.

Additional information

Communicated by D. Chagné

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 528 kb)

ESM 2

(PDF 130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moriya, S., Iwanami, H., Haji, T. et al. QTL analysis of crown gall disease resistance in apple: first plant R gene candidates effective against Rhizobium rhizogenes (Ti). Tree Genetics & Genomes 17, 25 (2021). https://doi.org/10.1007/s11295-021-01508-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-021-01508-9

Keywords

Navigation