Skip to main content

Advertisement

Log in

Synthesis, characterization, and in vitro drug release properties of AuNPs/p(AETAC-co-VI)/Q nanocomposite hydrogels

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

In this study, the cationic monomer [2-(acryloyloxy)ethyl]trimethylammonium chloride solution (AETAC) and vinyl imidazole (VI) were used with the free radical polymerization technique, which is a simple and rapid synthesis method, to synthesize p(AETAC-co-VI) hydrogels. To increase the density of cationic charge on the hydrogel, it underwent the protonation process with HCl. The obtained p(AETAC-co-VI)/Q hydrogel was modified with Au nanoparticles to increase bactericidal effect to obtain the AuNPs/p(AETAC-co-VI)/Q nanocomposite hydrogel. The morphology and chemical structure of the hydrogels were characterized with SEM and FTIR. Additionally, the swelling capabilities were tested in different pH media. XRD and TEM confirmed the formation of the nanocomposite hydrogel. The antibacterial activity of the hydrogels was tested against E. coli and S. aureus, and controlled release implementations were completed with sodium diclofenac (NaDc) drug. The NaDc drug release profiles of the hydrogels were researched using the Korsmeyer–Peppas model at 37 °C in different simulated buffer (pH 6.0, 7.2, and 8.0) solutions. It was found that both the hydrogel and nanocomposite hydrogel followed non-Fickian diffusion mechanisms as free release mechanism. Here, the maximum drug release efficacy was found to be 97%, and drug release was more rapid in basic media when release media were compared. The AuNPs/p(AETAC-co-VI)/Q nanocomposite hydrogels produced in this study with advanced antibacterial features were suitable for recommendation as good carriers for in vitro release of NaDc drugs in areas like the biomedical and pharmaceutical industries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aswathy SH, Narendrakumar U, Manjubala I (2020) Commercial hydrogels for biomedical applications. Heliyon 6:e03719. https://doi.org/10.1016/j.heliyon.2020.e03719

    Article  CAS  Google Scholar 

  2. Chen J, Peng Q, Peng X, Han L, Wang X, Wang J, Zeng H (2020) Recent advances in mechano-responsive hydrogels for biomedical applications. ACS Appl Polym Mater 2:1092–1107. https://doi.org/10.1021/acsapm.0c00019

    Article  CAS  Google Scholar 

  3. Mantha S, Pillai S, Khayambashi P, Upadhyay A, Zhang Y, Tao O, Pham HM, Tran SD (2019) Smart hydrogels in tissue engineering and regenerative medicine. Materials (Basel) 12(20):3323. https://doi.org/10.3390/ma12203323

    Article  CAS  Google Scholar 

  4. Rezvani Ghomi E, Khalili S, Nouri Khorasani S, Esmaeely Neisiany R, Ramakrishna S (2019) Wound dressings: current advances and future directions. J Appl Polym Sci 136(27):47738. https://doi.org/10.1002/app.47738

    Article  CAS  Google Scholar 

  5. Cascone S, Lamberti G (2020) Hydrogel-based commercial products for biomedical applications: a review. Int J Pharm 573:118803. https://doi.org/10.1016/j.ijpharm.2019.118803

    Article  CAS  Google Scholar 

  6. Xiang J, Shen L, Hong Y (2020) Status and future scope of hydrogels in wound healing: synthesis, materials and evaluation. Eur Polym J 130:109609. https://doi.org/10.1016/j.eurpolymj.2020.109609

    Article  CAS  Google Scholar 

  7. Muñoz-Bonilla A, Fernández-García M (2015) The roadmap of antimicrobial polymeric materials in macromolecular nanotechnology. Eur Polym J 65:46–62. https://doi.org/10.1016/j.eurpolymj.2015.01.030

    Article  CAS  Google Scholar 

  8. Gupta A, Kowalczuk M, Heaselgrave W, Britland ST, Martin C, Radecka I (2019) The production and application of hydrogels for wound management: a review. Eur Polym J 111:134–151. https://doi.org/10.1016/j.eurpolymj.2018.12.019

    Article  CAS  Google Scholar 

  9. Zhang L, Yin H, Lei X, Lau JNY, Yuan M, Wang X, Zhang F, Zhou F, Qi S, Shu B, Wu J (2019) A systematic review and meta-analysis of clinical effectiveness and safety of hydrogel dressings in the management of skin wounds. Front Bioeng Biotechnol 7(342):1–16. https://doi.org/10.3389/fbioe.2019.00342

    Article  CAS  Google Scholar 

  10. Zhu T, Mao J, Cheng Y, Liu H, Lv L, Ge M, Li S, Huang J, Chen Z, Li H, Yang L, Lai Y (2019) Recent progress of polysaccharide-based hydrogel interfaces for wound healing and tissue engineering. Adv Mater Interfaces 6(17):1900761. https://doi.org/10.1002/admi.201900761

    Article  CAS  Google Scholar 

  11. Li S, Dong S, Xu W, Tu S, Yan L, Zhao C, Ding J, Chen X (2018) Antibacterial hydrogels. Adv Sci (Weinh) 5(5):1700527. https://doi.org/10.1002/advs.201700527

    Article  CAS  Google Scholar 

  12. Bhowmick S, Mohanty S, Koul V (2016) Fabrication of transparent quaternized PVA/silver nanocomposite hydrogel and its evaluation as an antimicrobial patch for wound care systems. J Mater Sci Mater Med 27:160. https://doi.org/10.1007/s10856-016-5772-8

    Article  CAS  Google Scholar 

  13. Xue Y, Xiao H, Zhang Y (2015) Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. Int J Mol Sci 16(12):3626–3655. https://doi.org/10.3390/ijms16023626

    Article  CAS  Google Scholar 

  14. Druvari D, Koromilas N, Bekiari V, Bokias G, Kallitsis J (2018) Polymeric antimicrobial coatings based on quaternary ammonium compounds. Coatings 8(1):8. https://doi.org/10.3390/coatings8010008

    Article  CAS  Google Scholar 

  15. Wang K, Wang J, Li L, Xu L, Feng N, Wang Y, Fei X, Tian J, Li Y (2019) Synthesis of a novel anti-freezing, non-drying antibacterial hydrogel dressing by one-pot method. Chem Eng J 372:216–225. https://doi.org/10.1016/j.cej.2019.04.107

    Article  CAS  Google Scholar 

  16. Caillier L, de Givenchy ET, Levy R, Vandenberghe Y, Géribaldi S, Guittard F (2009) Synthesis and antimicrobial properties of polymerizable quaternary ammoniums. Eur J Med Chem 44(8):3201–3208. https://doi.org/10.1016/j.ejmech.2009.03.031

    Article  CAS  Google Scholar 

  17. Xu C, Akakuru OU, Ma X, Zheng J, Zheng J, Wu A (2020) Nanoparticle-based wound dressing: recent progress in the detection and therapy of bacterial infections. Bioconjug Chem 31(7):1708–1723. https://doi.org/10.1021/acs.bioconjchem.0c00297

    Article  CAS  Google Scholar 

  18. Bhowmick S, Koul V (2016) Assessment of PVA/silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: synthesis, characterization and biological evaluation. Mater Sci Eng C Mater Biol Appl 59:109–119. https://doi.org/10.1016/j.msec.2015.10.003

    Article  CAS  Google Scholar 

  19. Dykman LA, Khlebtsov NG (2011) Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Nat 3(2):34–55. https://doi.org/10.32607/20758251-2011-3-2-34-55

    Article  CAS  Google Scholar 

  20. Singh J, Kumar S, Dhaliwal AS (2020) Controlled release of amoxicillin and antioxidant potential of gold nanoparticles-xanthan gum/poly (acrylic acid) biodegradable nanocomposite. J Drug Deliv Sci Tec 55:101384. https://doi.org/10.1016/j.jddst.2019.101384

    Article  Google Scholar 

  21. Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45:7896–7936. https://doi.org/10.1002/anie.200602454

    Article  Google Scholar 

  22. Hendrich CM, Sekine K, Koshikawa T, Tanaka K, Hashmi ASK (2020) Homogeneous and heterogeneous gold catalysis for materials science. Chem Rev. https://doi.org/10.1021/acs.chemrev.0c00824

  23. Nasef SM, Khozemy EE, Mahmoud GA (2019) Characterization and in vitro drug release properties of chitosan/acrylamide/gold nanocomposite prepared by gamma irradiation. Int J Polym Mater Po 68:723–732. https://doi.org/10.1080/00914037.2018.1493685

    Article  CAS  Google Scholar 

  24. Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37(8):1783–1791. https://doi.org/10.1039/b711490g

    Article  CAS  Google Scholar 

  25. Katas H, Lim CS, Nor Azlan AYH, Buang F, Mh Busra MF (2019) Antibacterial activity of biosynthesized gold nanoparticles using biomolecules from Lignosus rhinocerotis and chitosan. Saudi Pharm J 27(2):283–292. https://doi.org/10.1016/j.jsps.2018.11.010

    Article  Google Scholar 

  26. Folorunso A, Akintelu S, Oyebamiji AK, Ajayi S, Abiola B, Abdusalam I, Morakinyo A (2019) Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata. J Nanostruct Chem 9:111–117. https://doi.org/10.1007/s40097-019-0301-1

    Article  CAS  Google Scholar 

  27. Lin S, Jiang S, Zhang Y, Dai Z, Dai Y, Xia F, Zhang X (2021) Gold nanorods crosslinking PNIPAM hydrogels via dynamic Au-thiolate interaction with stretchable, adhesive, self-healing, and photothermal properties. Gold Bull 54:59–67. https://doi.org/10.1007/s13404-021-00293-6

    Article  CAS  Google Scholar 

  28. Mordorski B, Prow T (2016) Nanomaterials for wound healing. Curr Derm Rep 5:278–286. https://doi.org/10.1007/s13671-016-0159-0

    Article  Google Scholar 

  29. Kavetskyy T, Stasyuk N, Smutok O, Demkiv O, Kukhazh Y, Hoivanovych N, Boev V, Ilcheva V, Petkova T, Gonchar M (2019) Improvement of amperometric laccase biosensor using enzyme-immobilized gold nanoparticles coupling with ureasil polymer as a host matrix. Gold Bull 52:79–85. https://doi.org/10.1007/s13404-019-00255-z

    Article  CAS  Google Scholar 

  30. Ma K, Cheng Y, Wei X, Chen D, Zhao X, Jia P (2020) Gold embedded chitosan nanoparticles with cell membrane mimetic polymer coating for pH-sensitive controlled drug release and cellular fluorescence imaging. J Biomater Appl 10:1–12. https://doi.org/10.1177/0885328220952594

    Article  CAS  Google Scholar 

  31. Zhu S, Wang X, Liu L, Li L (2020) Gold nanocluster grafted conjugated polymer nanoparticles for cancer cell imaging and photothermal killing. Colloid Surf A 597:124764. https://doi.org/10.1016/j.colsurfa.2020.124764

    Article  CAS  Google Scholar 

  32. Marsich E, Travan A, Donati I, Di Luca A, Benincasa M, Crosera M, Paoletti S (2011) Biological response of hydrogels embedding gold nanoparticles. Colloid Surface B 83(2):331–339. https://doi.org/10.1016/j.colsurfb.2010.12.002

    Article  CAS  Google Scholar 

  33. Im P, Kim J (2018) On-demand macroscale delivery system based on a macroporous cryogel with a high drug loading capacity for enhanced cancer therapy. ACS Biomater Sci Eng 4(10):3498–3505. https://doi.org/10.1021/acsbiomaterials.8b00911

    Article  CAS  Google Scholar 

  34. Kurdtabar M, Baghestani G, Bardajee GR (2019) Development of a novel thermo-responsive hydrogel-coated gold nanorods as a drug delivery system. Gold Bull 52(1):9–17. https://doi.org/10.1007/s13404-018-0248-x

    Article  CAS  Google Scholar 

  35. Sadat Akhavi S, Moradi Dehaghi S (2020) Drug delivery of amphotericin B through core-shell composite based on PLGA/Ag/Fe3O4: In Vitro Test. Appl Biochem Biotechnol 191:496–510. https://doi.org/10.1007/s12010-019-03181-0

    Article  CAS  Google Scholar 

  36. Singh B, Dhiman A (2016) Design of acacia gum–carbopol–cross-linked-polyvinylimidazole hydrogel wound dressings for antibiotic/anesthetic drug Delivery. Ind Eng Chem Res 55(34):9176–9188. https://doi.org/10.1021/acs.iecr.6b01963

    Article  CAS  Google Scholar 

  37. Onder A, Ilgin P, Ozay H, Ozay O (2020) Removal of dye from aqueous medium with pH-sensitive poly[(2-(acryloyloxy)ethyl)trimethylammonium chloride-co-1-vinyl-2-pyrrolidone] cationic hydrogel. J Environ Chem Eng 8(5):104436. https://doi.org/10.1016/j.jece.2020.104436

    Article  CAS  Google Scholar 

  38. Kıvanç MR, Ozay O, Ozay H, Ilgin P (2020) Removal of anionic dyes from aqueous media by using a novel high positively charged hydrogel with high capacity. J Dispers Sci Technol:1–16. https://doi.org/10.1080/01932691.2020.1847658

  39. Ilgin P, Ozay H, Ozay O (2020) Synthesis and characterization of pH responsive alginate based-hydrogels as oral drug delivery carrier. J Polym Res 27:251. https://doi.org/10.1007/s10965-020-02231-0

    Article  CAS  Google Scholar 

  40. Ozay H, Ilgin P, Ozay O (2019) Novel hydrogels based on crosslinked chitosan with formyl-phosphazene using Schiff-base reaction. Int J Polym Mater Polym Biomater:1–10. https://doi.org/10.1080/00914037.2019.1706514

  41. Ilgin P, Ozay H, Ozay O (2019) A new dual stimuli responsive hydrogel: modeling approaches for the prediction of drug loading and release profile. Eur Polym J 113:244–253. https://doi.org/10.1016/j.eurpolymj.2019.02.003

    Article  CAS  Google Scholar 

  42. Siepmann J, Peppas NA (2001) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 48(2-3):139–157. https://doi.org/10.1016/S0169-409X(01)00112-0

    Article  CAS  Google Scholar 

  43. Pekel N, Güven O (2002) Synthesis and characterization of poly(N -vinyl imidazole) hydrogels crosslinked by gamma irradiation. Polym Int 51(12):1404–1410. https://doi.org/10.1002/pi.1065

    Article  CAS  Google Scholar 

  44. Genç F, Uzun C, Güven O (2016) Quaternized poly(1-vinylimidazole) hydrogel for anion adsorption. Polym Bull 73:179–190. https://doi.org/10.1007/s00289-015-1479-0

    Article  CAS  Google Scholar 

  45. Heidari S, Esmaeilzadeh F, Mowla D, Ghasemi S (2018) Synthesis of an efficient copolymer of acrylamide and acrylic acid and determination of its swelling behavior. J Pet Explor Prod Technol 8:1331–1340. https://doi.org/10.1007/s13202-017-0428-x

    Article  CAS  Google Scholar 

  46. Horkay F, Tasaki I, Basser PJ (2000) Osmotic swelling of polyacrylate hydrogels in physiological salt solutions. Biomacromolecules 1(1):84–90. https://doi.org/10.1021/bm9905031

    Article  CAS  Google Scholar 

  47. Primo GA, Garcia Manzano MF, Romero MR, Alvarez Igarzabal CI (2015) Synthesis and characterization of hydrogels from 1-vinylimidazole. Highly resistant co-polymers with synergistic effect. Mater Chem Phys 153:365–375. https://doi.org/10.1016/j.matchemphys.2015.01.027

    Article  CAS  Google Scholar 

  48. Veerakumar P, Sangili A, Chen S-M, Lin K-C (2020) Ultrafine gold nanoparticle embedded poly(diallyldimethylammonium chloride)–graphene oxide hydrogels for voltammetric determination of an antimicrobial drug (metronidazole). J Mater Chem C 8:7575–7590. https://doi.org/10.1039/C9TC06690J

    Article  CAS  Google Scholar 

  49. Tepale N, Fernández-Escamilla VVA, Carreon-Alvarez C, González-Coronel VJ, Luna-Flores A, Carreon-Alvarez A, Aguilar J (2019) Nanoengineering of gold nanoparticles: green synthesis, characterization, and applications. Crystals 9(12):612. https://doi.org/10.3390/cryst9120612

    Article  CAS  Google Scholar 

  50. Bardajee GR, Mizani F, Hosseini SS (2017) pH sensitive release of doxorubicin anticancer drug from gold nanocomposite hydrogel based on poly(acrylic acid) grafted onto salep biopolymer. J Polym Res 24:4. https://doi.org/10.1007/s10965-017-1197-4

    Article  CAS  Google Scholar 

  51. Ozay H, Tarımeri N, Gungor Z, Demirbakan B, Özcan B, Sezgintürk MK, Ozay O (2020) A new approach to synthesis of highly dispersed gold nanoparticles via glucose oxidase-immobilized hydrogel and usage in the reduction of 4-nitrophenol. ChemistrySelect 5(29):9143–9152. https://doi.org/10.1002/slct.202002327

    Article  CAS  Google Scholar 

  52. Mandal B, Rameshbabu AP, Dhara S, Pal S (2017) Nanocomposite hydrogel derived from poly (methacrylic acid)/carboxymethyl cellulose/AuNPs: a potential transdermal drugs carrier. Polymer 120:9–19. https://doi.org/10.1016/j.polymer.2017.05.042

    Article  CAS  Google Scholar 

  53. Prusty K, Swain SK (2019) Release of ciprofloxacin drugs by nano gold embedded cellulose grafted polyacrylamide hybrid nanocomposite hydrogels. Int J Biol Macromol 126:765–775. https://doi.org/10.1016/j.ijbiomac.2018.12.258

    Article  CAS  Google Scholar 

  54. Pereira AKDS, Reis DT, Barbosa KM, Scheidt GN, da Costa LS, Santos LSS (2020) Antibacterial effects and ibuprofen release potential using chitosan microspheres loaded with silver nanoparticles. Carbohydr Res 488:107891. https://doi.org/10.1016/j.carres.2019.107891

    Article  CAS  Google Scholar 

  55. Ozay H, Ilgin P, Ozyurt C, Ozay O (2020) The single-step synthesis of thiol-functionalized phosphazene-based polymeric microspheres as drug carrier. Polymer-Plastics Technol Mater 59(17):1944–1955. https://doi.org/10.1080/25740881.2020.1784212

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Çanakkale Onsekiz Mart University Scientific Research Coordination Unit (project number: FBA-2020-3231).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinar Ilgin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durmuş, S., Yilmaz, B., Kıvanç, M.R. et al. Synthesis, characterization, and in vitro drug release properties of AuNPs/p(AETAC-co-VI)/Q nanocomposite hydrogels. Gold Bull 54, 75–87 (2021). https://doi.org/10.1007/s13404-021-00295-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-021-00295-4

Keywords

Navigation