Skip to main content
Log in

Large-Eddy Simulation of Bypass Transition on a Zero-Pressure-Gradient Flat Plate Using the Spectral-Element Dynamic Model

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The present paper deals with the large-eddy simulation (LES) of a zero-pressure-gradient smooth flat-plate boundary layer undergoing bypass transition due to the presence of freestream turbulence of intensity around \(3.0\%\). Transition has been achieved by the introduction of synthetic turbulence into the freestream in a manner designed to invoke a behaviour closely resembling that of the ERCOFTAC T3A experiment. We make use of the spectral-element dynamic model (SEDM), implemented within the framework of a high-order spectral-difference solver, to carry out LES upon several sets of computational grids. Furthermore, comparisons against several other well known models such as the WALE and SIGMA model, are performed and presented in addition to implicit-LES (ILES). Our results show that the SEDM inputs relatively minor levels of dissipation into the pre-transitional region. This allows the fluctuating stresses to grow unhindered, until the critical amplitude, required for transition to occur, is reached. Furthermore, within the transitional region, the eddy-viscosity is dominant near the wall and not at the interface between the freestream and boundary layer where the breakdown mechanism predominates. The rapid grid convergence properties of the SEDM, demonstrated in this work, make them well-suited for use in conjunction with other high-order schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Num. Anal. 19(4), 742–760 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Calo, V.M.: Residual-based multiscale turbulence modeling: finite volume simulations of bypass transition. Ph.D. thesis, Stanford University USA (2004)

  • Chapelier, J.B., Lodato, G.: A spectral-element dynamic model for the large-eddy simulation of turbulent flows. J. Comput. Phys. 321, 279–302 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Chapelier, J.B., Lodato, G., Jameson, A.: A study on the numerical dissipation of the spectral difference method for freely decaying and wall-bounded turbulence. Comput. Fluids 139, 261–280 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Chapman, D.R., Kuhn, G.D.: The limiting behaviour of turbulence near a wall. J. Fluid Mech. 170, 265–292 (1986)

    Article  MATH  Google Scholar 

  • Ducros, F., Comte, P., Lesieur, M.: Large-eddy simulation of a spatially growing boundary layer over an adiabatic flat plate at low mach number. Int. J. Heat Fluid Flow 16(5), 341–348 (1995)

    Article  Google Scholar 

  • Ducros, F., Comte, P., Lesieur, M.: Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate. J. Fluid Mech. 326, 1–36 (1996)

    Article  MATH  Google Scholar 

  • Ducros, F., Nicoud, F., Poinsot, T.: Wall-adapting local eddy-viscosity models for simulations in complex geometries (1998)

  • Fransson, J.H., Matsubara, M., Alfredsson, P.H.: Transition induced by free-stream turbulence. J. Fluid Mech. 527, 1–25 (2005)

    Article  MATH  Google Scholar 

  • Frère, A., Hillewaert, K., Chatelain, P., Winckelmans, G.: High Reynolds number airfoil: from wall-resolved to wall-modeled LES. Flow Turbul. Combust. 101(2), 457–476 (2018)

    Article  Google Scholar 

  • Harten, A., Hyman, J.M.: Self adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys. 50(2), 235–269 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Huai, X., Joslin, R.D., Piomelli, U.: Large-eddy simulation of transition to turbulence in boundary layers. Theor. Comput. Fluid Dyn. 9(2), 149–163 (1997)

    Article  MATH  Google Scholar 

  • Hughes, T.J., Mazzei, L., Oberai, A.A., Wray, A.A.: The multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence. Phys. Fluids 13(2), 505–512 (2001)

    Article  MATH  Google Scholar 

  • Inagaki, M., Kondoh, T., Nagano, Y.: A mixed-time-scale sgs model with fixed model-parameters for practical les. J. Fluids Eng. 127(1), 1–13 (2005)

    Article  Google Scholar 

  • Jacobs, R., Durbin, P.: Simulations of bypass transition. J. Fluid Mech. 428, 185–212 (2001)

    Article  MATH  Google Scholar 

  • Jameson, A.: A proof of the stability of the spectral difference method for all orders of accuracy. J. Sci. Comput. 45(1–3), 348–358 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Jameson, A., Vincent, P.E., Castonguay, P.: On the non-linear stability of flux reconstruction schemes. J. Sci. Comput. 50(2), 434–445 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Jecker, L., Vermeersch, O., Deniau, H., Croner, E., Casalis, G.: A laminar kinetic energy model based on the Klebanoff-mode dynamics to predict bypass transition. Eur. J. Mech. B/Fluids 74, 265–279 (2019)

    Article  MathSciNet  Google Scholar 

  • Jonáš, P., Mazur, O., Uruba, V.: On the receptivity of the by-pass transition to the length scale of the outer stream turbulence. Eur. J. Mech. B/Fluids 19(5), 707–722 (2000)

    Article  MATH  Google Scholar 

  • Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186(2), 652–665 (2003)

    Article  MATH  Google Scholar 

  • Kopriva, D.A.: A conservative staggered-grid chebyshev multidomain method for compressible flows ii. a. semi-structured method. J. Comput. Phys. 128(2), 475–488 (1996)

    Article  MATH  Google Scholar 

  • Kopriva, D.A., Kolias, J.H.: A conservative staggered-grid chebyshev multidomain method for compressible flows. J. Comput. Phys. 125(1), 244–261 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Lardeau, S., Leschziner, M., Zaki, T.: Large eddy simulation of transitional separated flow over a flat plate and a compressor blade. Flow, Turbul. Combust. 88(1–2), 19–44 (2012)

    Article  MATH  Google Scholar 

  • Lesieur, M., Métais, O., Comte, P., et al.: Large-eddy simulations of turbulence. Cambridge University Press (2005)

  • Liu, Y., Vinokur, M., Wang, Z.: Spectral difference method for unstructured grids i: basic formulation. J. Comput. Phys. 216(2), 780–801 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Lund, T.S., Wu, X., Squires, K.D.: Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140(2), 233–258 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Manzanero, J., Rubio, G., Ferrer, E., Valero, E., Kopriva, D.A.: Insights on aliasing driven instabilities for advection equations with application to gauss-lobatto discontinuous galerkin methods. J. Sci. Comput. 75(3), 1262–1281 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Matsubara, M., Alfredsson, P.H.: Disturbance growth in boundary layers subjected to free-stream turbulence. J. Fluid Mech. 430, 149–168 (2001)

    Article  MATH  Google Scholar 

  • Métais, O., Lesieur, M.: Spectral large-eddy simulation of isotropic and stably stratified turbulence. J. Fluid Mech. 239, 157–194 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Morkovin, M.V.: Bypass transition to turbulence and research desiderata. Trans. Turb. 2386, 161–204 (1985)

    Google Scholar 

  • Nagarajan, S., Lele, S., Ferziger, J.: Leading-edge effects in bypass transition. J. Fluid Mech. 572, 471–504 (2007)

    Article  MATH  Google Scholar 

  • Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbul. Combust. 62(3), 183–200 (1999)

    Article  MATH  Google Scholar 

  • Nicoud, F., Toda, H.B., Cabrit, O., Bose, S., Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23(8), 085106 (2011)

    Article  Google Scholar 

  • Ovchinnikov, V., Choudhari, M.M., Piomelli, U.: Numerical simulations of boundary-layer bypass transition due to high-amplitude free-stream turbulence. J. Fluid Mech. 613, 135–169 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Parsani, M., Ghorbaniasl, G., Lacor, C., Turkel, E.: An implicit high-order spectral difference approach for large eddy simulation. J. Comput. Phys. 229(14), 5373–5393 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Pinto, B., Lodato, G.: Synthetic freestream disturbance for the numerical reproduction of experimental zero-pressure-gradient bypass transition test cases. Flow, Turbul. Combust. 103(1), 25–54 (2019)

    Article  Google Scholar 

  • Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Sayadi, T., Moin, P.: Large eddy simulation of controlled transition to turbulence. Phys. Fluids 24(11), 114103 (2012)

    Article  Google Scholar 

  • Schubauer, G.B., Skramstad, H.K.: Laminar-boundary-layer oscillations and transition on a flat plate. Tech. rep, National Aeronautics and Space Administration Washington DC (1948)

  • Sun, Y., Wang, Z.J., Liu, Y.: High-order multidomain spectral difference method for the Navier-Stokes equations on unstructured hexahedral grids. Commun. Comput. Phys. 2(2), 310–333 (2007)

    MathSciNet  MATH  Google Scholar 

  • Tomkins, C.D., Adrian, R.J.: Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 37–74 (2003)

    Article  MATH  Google Scholar 

  • Vanharen, J., Puigt, G., Vasseur, X., Boussuge, J.F., Sagaut, P.: Revisiting the spectral analysis for high-order spectral discontinuous methods. J. Comput. Phys. 337, 379–402 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Voke, P.R., Yang, Z.: Numerical study of bypass transition. Phys. Fluids 7(9), 2256–2264 (1995)

    Article  MATH  Google Scholar 

  • Wang, Z., Liu, Y., May, G., Jameson, A.: Spectral difference method for unstructured grids ii: extension to the euler equations. J. Sci. Comput. 32(1), 45–71 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The use of the SD solver originally developed by Antony Jameson’s group at Stanford University is gratefully acknowledged. This work was granted access to the HPC resources of IDRIS-CNRS under the allocation i2016-2a7361 made by GENCI (Grand Equipement National de Calcul Intensif). The Haute Normandie Computing center CRIANN is also acknowledged.

Funding

Financial support to the first author was provided by ANR under grant number ANR-14-CE05-0029 and FRAE under grant number 14-CE05-0029-FN. The PhD scholarship of the second author is founded by the University of Rouen Normandie. Financial support to the third author was provided within the framework of the BIOENGINE Project through the European Funds of Regional Development (FEDER) under grant number HN 0002485

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Lodato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lodato, G., Tonicello, N. & Pinto, B. Large-Eddy Simulation of Bypass Transition on a Zero-Pressure-Gradient Flat Plate Using the Spectral-Element Dynamic Model. Flow Turbulence Combust 107, 845–874 (2021). https://doi.org/10.1007/s10494-021-00262-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-021-00262-1

Keywords

Navigation