Skip to main content
Log in

Lorentz Force Characteristics of a Bare Electrodynamic Tether System with a Hollow Cathode

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

The electrodynamic tether (EDT) is a type of propulsion system that uses the geomagnetic field and ionospheric plasma and has the potential to conduct a space-debris removal mission without consuming a large amount of propellant. To understand the dynamic properties of the bare EDT system, an orbital dynamic model based on a detailed environmental space model and the real discharge characteristics of a hollow cathode plasma contactor (HCPC) was built. By numerical simulation, the differences in the bare tether performance caused by various orbital conditions and HCPC voltage models (at constant or various voltages) were compared and discussed. The results suggest that dynamic distinctions generated by the two bias voltage models increased as the latitude increased from 0° to 60°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Abbreviations

A:

Cross-sectional area, mm-2

\( \hat{A} \) :

Pre-exponential factor of Maxwellian distribution

a :

Semi-major axis, km

\( \hat{a} \) :

Factor in the fitting equation, the same as \( \hat{b} \), \( \hat{c} \), \( \hat{d} \),\( \hat{e} \), and \( \hat{f} \)

B :

Magnetic field strength, nT

C D :

Atmospheric drag coefficient

E :

Electric field strength, V/m

e :

Orbital eccentricity

F :

Force, mN

f :

Specific force, m/s2

G:

Gravitational constant, 6.67 × 10-11 N∙m2/kg2

g :

Gravitational acceleration, m/s2

\( {g}_n^m \) :

Gaussian coefficient, which is also shown as \( {h}_n^m \)

H:

Scale height of the atmosphere, km

h :

Altitude, km

h :

Reference height, km

I :

Current, A

i :

Orbital inclination, degrees

i :

Unit vector

L :

Bare tether length, km

l :

Length coordinate along the tether, km

M P :

Magnetic potential, V∙m/s

M :

Mass, kg

n :

Numerical density, m-3

\( {P}_n^m \) :

Regularised Legendre function

p :

Latus rectum, km

q:

Elementary charge, 1.602×10-19C

r :

Radius, km

T :

Temperature, eV

v :

Velocity, m/s

V :

Potential, V

A:

Spacecraft end of the bare tether

a :

Ambient

B:

Current transition point of the tether

C:

HCPC end of the bare tether

CGe :

From the bare EDT center of gravity to the earth core

e :

Electron

emission :

Emissions of electrons

ex :

External force

g :

Gravitation

k :

Keeper

ion :

Ion

lorentz :

Lorentz force

n :

Normal direction

neutral :

Neutral particle

o :

Original

p :

Plasma in ambient

pe :

From any point to the center of Earth

relative :

Bare EDT velocity relative to the geomagnetic field

tether :

On the bare tether

θ :

True anomaly

μ :

Gmearth, m3/s

Π :

Perimeter

ρ :

Density, kg/m3

ρ :

Density at the reference point, kg/m3

\( \hat{\rho} \) :

Radius of curvature, km

σ :

Collision cross-sectional area, m2

Ω :

Longitude ascending node, degrees

ω :

Argument of periapsis, degrees

ω r :

Angular velocity, rad/s

References

  1. Ahedo, E., Sanmartin, J.: Analysis of electrodynamic tethers as deorbiting systems. In: 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Joint Propulsion Conferences. American Institute of Aeronautics and Astronautics, (2000)

  2. Ahedo, E., Sanmartin, J.R.: Analysis of bare-tether Systems for Deorbiting low-Earth-Orbit Satellites. J. Spacecr. Rocket. 39(2), 198–205 (2002). https://doi.org/10.2514/2.3820

    Article  Google Scholar 

  3. Beletsky, V.V., Levin, E.M.: Traveling Tether. In: Dynamics of Space Tether Systems, 1st ed. San Diego (1993)

  4. Bilitza, D., Reinisch, B.W.: International reference ionosphere 2007: improvements and new parameters. Adv. Space Res. 42(4), 599–609 (2008). https://doi.org/10.1016/j.asr.2007.07.048

    Article  Google Scholar 

  5. Bombardelli, C.: Power density of a bare Electrodynamic tether Generator. J. Propuls. Power. 28(3), 664–668 (2012). https://doi.org/10.2514/1.B34189

    Article  MathSciNet  Google Scholar 

  6. Cash, J.R., Moore, D.R.: A high order method for the numerical solution of two-point boundary value problems. BIT Numer. Math. 20(1), 44–52 (1980). https://doi.org/10.1007/BF01933584

    Article  MathSciNet  MATH  Google Scholar 

  7. Colombo, G., Martinez-Sanchez, M., Arnold, D.: The study of the use of tethers for payload orbital transfer. Continuation of investigation of electrodynamic stabilization and control of long orbiting tethers. In. (1982)

  8. Englert, C.R., Bays, J.T., Marr, K.D., Brown, C.M., Nicholas, A.C., Finne, T.T.: Optical orbital debris spotter. Acta Astronaut. 104(1), 99–105 (2014). https://doi.org/10.1016/j.actaastro.2014.07.031

    Article  Google Scholar 

  9. Gilchrist, B., Bilen, S., Hoyt, R., Stone, N., Vaughn, J., Fuhrhop, K., Krause, L., Khazanov, G., Johnson, L.: The PROPEL Electrodynamic Tether Mission and Connecting to the Ionosphere. In: 12th Spacecraft Charging Technology Conference (2012)

  10. Goebel, D.M., Watkins, R.M., Jameson, K.K.: LaB6 hollow cathodes for ion and hall thrusters. J. Propuls. Power. 23(3), 552–558 (2007). https://doi.org/10.2514/1.25475

    Article  Google Scholar 

  11. Goldberg, H.R., Gilchrist, B.E.: The Icarus student satellite project. Acta Astronaut. 56(1–2), 107–114 (2005). https://doi.org/10.1016/j.actaastro.2004.09.016

    Article  Google Scholar 

  12. Hedin, A.E.: The atmospheric model in the region 90 to 2000 km. Adv. Space Res. 8(5), 9–25 (1988). https://doi.org/10.1016/0273-1177(88)90038-5

    Article  Google Scholar 

  13. Johnson, L., Gilchrist, B., Estes, R.D., Lorenzini, E.: Overview of future NASA tether applications. In: James, H.G., Raitt, W.J., Sultzer, M.P. (eds.) active experiments in space plasmas, vol. 24. Adv. Space Res. 8, 1055–1063 (1999)

    Article  Google Scholar 

  14. Katz, I., Lilley, J.R., Greb, A., McCoy, J.E., Galofaro, J., Ferguson, D.C.: Plasma turbulence enhanced current collection - results from the plasma motor generator electrodynamic tether flight. J Geophys. Res. Space Phys. 100(A2), 1687–1690 (1995). https://doi.org/10.1029/94ja03142

    Article  Google Scholar 

  15. Khazanov, G.V., Krivorutsky, E., Sheldon, R.B.: Solid and grid sphere current collection in view of the tethered satellite system TSS 1 and TSS 1R mission results. J Geophys. Res. Space Phys. 110(A12) (2005). doi:https://doi.org/10.1029/2005ja011100

  16. Kruijff, M.: Tethers in space: a propellantless propulsion in-orbit demonstration. Doctoral Thesis (2011)

  17. Li, W., Li, H., Ding, Y., Wei, L., Lu, H., Gao, Q., Ning, Z., Yu, D.: An experimental setup for hollow cathode independent life test simulating hall thruster discharge current oscillations. Adv. Space Res. 62(9), 2551–2555 (2018). https://doi.org/10.1016/j.asr.2018.07.020

    Article  Google Scholar 

  18. Maus, S., Macmillan, S., McLean, S., Hamilton, B., Thomson, A., Nair, M., Rollins, C.: The US/UK World Magnetic Model for 2010–2015. In. NOAA Technical Report NESDIS/NGDC, (2010)

  19. Ning, Z.-X., Zhang, H.-G., Zhu, X.-M., Ouyang, L., Liu, X.-Y., Jiang, B.-H., Yu, D.-R.: 10000-ignition-cycle investigation of a LaB6 hollow cathode for 3-5-kilowatt hall thruster. J. Propuls. Power. 35(1), 87–93 (2019). https://doi.org/10.2514/1.B37192

    Article  Google Scholar 

  20. Ohkawa, Y., Kawamoto, S., Okumura, T., Iki, K., Horikawa, Y., Kawashima, K., Miura, Y., Takai, M., Washiya, M., Kawasaki, O., Tsujita, D., Kasai, T., Uematsu, H., Inoue, K.: Preparation for an On-Orbit Demonstration of an Electrodynamic Tether on the H-II Transfer Vehicle. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan. 14(ists30), Pb_1–Pb_6 (2016). https://doi.org/10.2322/tastj.14.Pb_1

    Article  Google Scholar 

  21. Oks, E.M., Anders, A., Brown, I.G.: Some effects of magnetic field on a hollow cathode ion source. Rev. Sci. Instrum. 75(4), 1030–1033 (2004). https://doi.org/10.1063/1.1651633

    Article  Google Scholar 

  22. Okumura, T., Ohkawa, Y., Koga, K., Kawakita, S., Kawamoto, S., Kobayashi, Y., Kasai, T.: Charging of the H-II transfer vehicle at rendezvous and docking phase. J. Spacecr. Rocket. 55(4), 971–983 (2018). https://doi.org/10.2514/1.A34068

    Article  Google Scholar 

  23. Pardini, C., Hanada, T., Krisko, P.H.: Benefits and risks of using electrodynamic tethers to de-orbit spacecraft. Acta Astronaut. 64(5–6), 571–588 (2009). https://doi.org/10.1016/j.actaastro.2008.10.007

    Article  Google Scholar 

  24. Pardini, C., Hanada, T., Krisko, P.H., Anselmo, L., Hirayama, H.: Are de-orbiting missions possible using electrodynamic tethers? Task review from the space debris perspective. Acta Astronaut. 60(10–11), 916–929 (2007). https://doi.org/10.1016/j.actaastro.2006.11.001

    Article  Google Scholar 

  25. Pedrini, D., Ducci, C., Misuri, T., Paganucci, F., Andrenucci, M.: Sitael hollow cathodes for low-power hall effect thrusters. IEEE Trans. Plasma Sci. 46(2), 296–303 (2018). https://doi.org/10.1109/TPS.2017.2778317

    Article  Google Scholar 

  26. Pelaez, J., Andres, Y.N.: Dynamic stability of electrodynamic tethers in inclined elliptical orbits. J Guidance Control Dyn. 28(4), 611–622 (2005). https://doi.org/10.2514/1.6685

    Article  Google Scholar 

  27. Pelaez, J., Sanjurjo, M.: Generator regime of self-balanced electrodynamic bare tethers. J. Spacecr. Rocket. 43(6), 1359–1369 (2006). https://doi.org/10.2514/1.20471

    Article  Google Scholar 

  28. Qin, Y., Xie, K., Guo, N., Zhang, Z., Zhang, C., Gu, Z., Zhang, Y., Jiang, Z., Ouyang, J.: The analysis of high amplitude of potential oscillations near the hollow cathode of ion thruster. Acta Astronaut. 134, 265–277 (2017). https://doi.org/10.1016/j.actaastro.2017.02.012

    Article  Google Scholar 

  29. Qin, Y., Xie, K., Zhang, Y., Ouyang, J.: Self-pulsing in a low-current hollow cathode discharge: From Townsend to glow discharge. Phys. Plasmas 23(2) (2016). doi:https://doi.org/10.1063/1.4941281

  30. Sanchez-Arriaga, G., Bombardelli, C., Chen, X.: Impact of nonideal effects on bare Electrodynamic tether performance. J. Propuls. Power. 31(3), 951–955 (2015). https://doi.org/10.2514/1.B35393

    Article  Google Scholar 

  31. Sanjurjo-Rivo, M., Pelaez, J.: Energy analysis of bare Electrodynamic tethers. J. Propuls. Power. 27(1), 246–256 (2011). https://doi.org/10.2514/1.48168

    Article  Google Scholar 

  32. Sanmartin, J., Charro, M., Lorenzini, E., Cosmo, M., Estes, R.: Analysis of ProSEDS Test of Bare-tether Collection. Paper presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (2003)

  33. Sanmartin, J.R., Martinezsanchez, M., Ahedo, E.: Bare wire anodes for electrodynamic tethers. J. Propuls. Power. 9(3), 353–360 (1993). https://doi.org/10.2514/3.23629

    Article  Google Scholar 

  34. van der Heide, E.J., Carroll, J.A., Kruijff, M.: Options for coordinated multi-point sensing in the lower thermosphere. Phys. Chem. Earth Part C Solar Terrestial Planet. Sci. 26(4), 285–291 (2001). https://doi.org/10.1016/s1464-1917(00)00122-7

    Article  Google Scholar 

  35. Vaughn, J., Curtis, L., Gilchrist, B., Bilen, S., Lorenzini, E.: Review of the ProSEDS Electrodynamic Tether Mission Development. In: 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 2004

  36. Watanabe, T., Fujii, H.A., Kusagaya, T., Sahara, H., Kojima, H., Takehara, S., Yamagiwa, Y., Sasaki, S., Abe, T., Tanaka, K., Oyama, K., Ebinuma, T., Johnson, L., Khazanov, G.V., Sanmartin, J.R., Charro, M., Kruijff, M., Heide, E.J.V.D., Rubin, B., Quiros, F.J.G.D., Trivailo, P.M., Williams, P.: T-Rex: Bare Electro-Dynamic Tape-Tether Technology Experiment on Sounding Rocket S520. The Journal of Space Technology and Science. 26(1), 1_14–11_20 (2012). https://doi.org/10.11230/jsts.26.1_14

    Article  Google Scholar 

  37. Williams, S.D., Gilchrist, B.E., Aguero, V.M., Indiresan, R.S., Thompson, D.C., Raitt, W.J.: TSS-1R vertical electric fields: long baseline measurements using an electrodynamic tether as a double probe. Geophys. Res. Lett. 25(4), 445–448 (1998). https://doi.org/10.1029/97gl03259

    Article  Google Scholar 

  38. Xie, K., Farnell, C.C., Williams, J.D.: The plasma properties and electron emission characteristics of near-zero differential resistance of hollow cathode-based plasma contactors with a discharge chamber. Phys. Plasmas 21(8) (2014a). doi:https://doi.org/10.1063/1.4892953

  39. Xie, K., Martinez, R.A., Williams, J.D.: Current-voltage characteristics of a cathodic plasma contactor with discharge chamber for application in electrodynamic tether propulsion. J Phys. D Appl. Phys. 47(15) (2014b). doi:https://doi.org/10.1088/0022-3727/47/15/155501

  40. Xie, K., Xia, Q., Williams, J.D., Martinez, R.A., Farnell, C.C.: Extracted current, Bias voltage, and ion production of Cathodic hollow-cathode-driven plasma contactors. J. Spacecr. Rocket. 52(4), 1181–1192 (2015). https://doi.org/10.2514/1.A33049

    Article  Google Scholar 

  41. Yu, B., Dai, P., Jin, D.: Modeling and dynamics of a bare tape-shaped tethered satellite system. Aerosp. Sci. Technol. 79, 288–296 (2018). https://doi.org/10.1016/j.ast.2018.05.046

    Article  Google Scholar 

  42. Zhong, R., Zhu, Z.: Dynamics of Nanosatellite deorbit by bare Electrodynamic tether in low earth orbit. J. Spacecr. Rocket. 50(3), 691–700 (2013). https://doi.org/10.2514/1.A32336

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Xie.

Ethics declarations

Conflicts of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, K., Yuan, H., Liang, F. et al. Lorentz Force Characteristics of a Bare Electrodynamic Tether System with a Hollow Cathode. J Astronaut Sci 68, 327–348 (2021). https://doi.org/10.1007/s40295-021-00256-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-021-00256-1

Keywords

Navigation