Skip to main content
Log in

Dynamical behavior of a stochastic SIQS epidemic model on scale-free networks

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In order to study the impact of random environments during the spread of the disease, we propose a novel stochastic SIQS model on scale-free networks, which introduces stochastic perturbations to the infected rates. We first obtain the existence of global positive solutions. Moreover, by constructing appropriate stochastic Lyapunov functions, we prove sufficient conditions for extinction and persistence of the disease. Finally, we verify the analysis results through numerical simulations. In addition, the results of previous studies are also improved in our research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arqub, O.A.: Numerical solutions of systems of first-order, two-point bvps based on the reproducing kernel algorithm. Calcolo 55, 1–28 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arqub, O.A., Rashaideh, H.: The rkhs method for numerical treatment for integrodifferential algebraic systems of temporal two-point bvps. Neural Comput. Appl. 30, 2595–2606 (2018)

    Article  Google Scholar 

  3. Arqub, O.A., Shawagfeh, N.: Application of reproducing kernel algorithm for solving dirichlet time-fractional diffusion-gordon types equations in porous media. J. Porous Media 22, 411–434 (2019)

    Article  Google Scholar 

  4. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dalal, N., Greenhalgh, D., Mao, X.: A stochastic model of aids and condom use. J. Math. Anal. Appl. 325, 36–53 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eubank, S., Guclu, H., Anil Kumar, V.S., Marathe, M.V., Srinivasan, A., Toroczkai, Z., Wang, N.: Modelling disease outbreaks in realistic urban social networks. Nature 429, 180–184 (2004)

    Article  Google Scholar 

  8. Fu, J., Han, Q., Lin, Y., Jiang, D.: Asymptotic behavior of a multigroup SIS epidemic model with stochastic perturbation. Adv. Differ. Equ. 84, 1–9 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Haas, C.N.: On the quarantine period for Ebola virus. PLoS Curr. 6, 25642371 (2014)

    Google Scholar 

  10. Hattaf, K., Mahrouf, M., Adnani, J., Yousfi, N.: Qualitative analysis of a stochastic epidemic model with specific functional response and temporary immunity. Physica A 490, 591–600 (2018)

    Article  MathSciNet  Google Scholar 

  11. Hawryluck, L., Gold, W.L., Robinson, S., Pogorski, S., Galea, S., Styra, R.: SARS control and psychological effects of quarantine, Toronto, Canada. Emerg. Infect. Dis. 10, 1206–1212 (2004)

    Article  Google Scholar 

  12. He, J.: Variational iteration method for autonomous ordinary differential systems. Appl. Math. Comput. 114, 115–123 (2000)

    MathSciNet  MATH  Google Scholar 

  13. He, J., Wu, X.: Variational iteration method: new development and applications. Comput. Math. Appl. 54, 881–894 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heymann, D.L.: Effects of social, environmental and economic factors on current and future patterns of infectious diseases. Interact Between Global Change Human Health 106, 290–303 (2004)

    Google Scholar 

  15. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525–546 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu, H., Yuan, X., Huang, L., Huang, C.: Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks. Math. Biosci. Eng. 16, 5729–5749 (2019)

    Article  MathSciNet  Google Scholar 

  17. Huang, S., Chen, F., Chen, L.: Global dynamics of a network-based SIQRS epidemic model with demographics and vaccination. Commun. Nonlinear Sci. Numer. Simul. 43, 296–310 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ji, C.: The stationary distribution of hepatitis B virus with stochastic perturbation. Appl. Math. Lett. 100, 106017 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kang, H., Liu, K., Fu, X.: Dynamics of an epidemic model with quarantine on scale-free networks. Phys. Lett. A 381, 3945–3951 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Krause, A.L., Kurowski, L., Yawar, K., Van Gorder, R.A.: Stochastic epidemic metapopulation models on networks: SIS dynamics and control strategies. J. Theor. Biol. 449, 35–52 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. La Salle, J.P.: The Stability of Dynamical Systems. SIAM, Philadelphia (1976)

    Book  Google Scholar 

  22. Li, C., Tsai, C., Yang, S.: Analysis of epidemic spreading of an SIRS model in complex heterogeneous networks. Commun. Nonlinear Sci. Numer. Simul. 19, 1042–1054 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, K., Zhu, G., Ma, Z., Chen, L.: Dynamic stability of an SIQS epidemic network and its optimal control. Commun. Nonlinear Sci. Numer. Simul. 66, 84–95 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, T., Wang, Y., Guan, Z.: Spreading dynamics of a SIQRS epidemic model on scale-free networks. Commun. Nonlinear Sci. Numer. Simul. 19, 686–692 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, J., Zhang, T.: Epidemic spreading of an SEIRS model in scale-free networks. Commun. Nonlinear Sci. Numer. Simul. 16, 3375–3384 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, Q., Jiang, D., Shi, N., Hayat, T., Ahmad, B.: Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence. Physica A 476, 58–69 (2017)

    Article  MathSciNet  Google Scholar 

  27. Ma, Z., Zhou, Y., Wu, J.: Modeling and Dynamics of Infectious Diseases, vol. 11. World Scientific, Beijing (2009)

    Book  MATH  Google Scholar 

  28. Mao, X.: Stochastic Differential Equations and Applications. Elsevier, New York (2007)

    MATH  Google Scholar 

  29. Mattioli, A.V., Puviani, M.B., Nasi, M., Farinetti, A.: COVID-19 pandemic: the effects of quarantine on cardiovascular risk. Eur. J. Clin. Nutr. 74, 852–855 (2020)

    Article  Google Scholar 

  30. Moreno, Y., Pastor-Satorras, R., Vespignani, A.: Epidemic outbreaks in complex heterogeneous networks. Eur. Phys. J. B 26, 521–529 (2002)

    Google Scholar 

  31. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203 (2001)

    Article  Google Scholar 

  32. Siegel, J.D., Rhinehart, E., Jackson, M., Chiarello, L., et al.: 2007 guideline for isolation precautions: preventing transmission of infectious agents in health care settings. Am. J. Infect. Control 35, 65–164 (2007)

    Article  Google Scholar 

  33. Sjödin, H., Wilder-Smith, A., Osman, S., Farooq, Z., Rocklöv, J.: Only strict quarantine measures can curb the coronavirus disease (COVID-19) outbreak in Italy, 2020. Eurosurveillance 25, 2000280 (2020)

    Article  Google Scholar 

  34. Yan, X., Zou, Y., Li, J.: Optimal quarantine and isolation strategies in epidemics control. World J. Model. Simul. 3, 202–211 (2007)

    Google Scholar 

  35. Zhang, Y., Li, Y.: Evolutionary dynamics of stochastic SEIR models with migration and human awareness in complex networks. Complexity 2020, 3768083 (2020)

    MATH  Google Scholar 

  36. Zhao, J., Liu, M., Wang, W., Yang, P.: The stability of SI epidemic model in complex networks with stochastic perturbation. Abstr. Appl. Anal. 2014, 610959 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for carefully reading the manuscript and for making important suggestions and comments, thereby improving their manuscript. This research was supported by the Hebei Provincial Natural Science Foundation of China under Grant No. A2016506002 and Foundation for Basic Disciplines of Army Engineer University under Grant No. KYSZJQZL2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiming Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Liu, Q. & Sun, M. Dynamical behavior of a stochastic SIQS epidemic model on scale-free networks. J. Appl. Math. Comput. 68, 813–838 (2022). https://doi.org/10.1007/s12190-021-01550-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01550-9

Keywords

Mathematics Subject Classification

Navigation