Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 8, 2021

Analysis of the predictability of stratospheric variability and climate indices based on seasonal retrospective forecasts of the INM RAS climate model

  • Vasilisa V. Vorobyeva and Evgenii M. Volodin EMAIL logo

Abstract

Ensemble numerical experiments for winter seasons of 1980–2014 were carried out with the use of the mathematical climate model of the Institute of Numerical Mathematics (INM) of the Russian Academy of Sciences developed initially for multi-year climate forecasts. Based on the results obtained in this research, a qualitative assessment of the reproduction of the North Atlantic (NAO) and Pacific-North American (PNA) oscillation indiceswas obtained. It was shown that the INM-CM5-0 climate model has a very high predictability of the winter NAO index and one, but not unique reason for this is the predictability of the stratospheric variability in the INM RAS model. The analysis of the quality of reproduction of the PNA index on a seasonal time scale for the INM-CM5-0 model has shown an acceptable result.

MSC 2010: 90C90; 86-08; 86A10; 62P12

Funding statement: The work was supported by the Russian Foundation for Basic Research (project No. 20–05–00673) and the Moscow Center for Fundamental and Applied Mathematics (agreement No. 075–15–2019–1624 with the Russian Ministry of Education and Science).

References

[1] L. H. Backer, L. C. Shaffrey, R. T. Sutton, A. Weisheimer, and A. A. Scaife, An intercomparison of skill and overconfidence/underconfidence of the wintertime North Atlantic Oscillation in multimodel seasonal forecasts. Geophys. Res. Lett. 45 (2018), No. 15, 7808–7817.10.1029/2018GL078838Search in Google Scholar

[2] E. A. Barnes, S. M. Samarasinghe, I. Ebert-Uphoff, and J. C. Furtado, Tropospheric and stratospheric causal pathways between the MJO and NAO. J. Geophys. Research: Atmospheres 124 (2019), No. 16, 9356–9371.10.1029/2019JD031024Search in Google Scholar

[3] A. G. Barnston and R. E. Livezey, Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Monthly Weather Review 115 (1987), 1083–1126.10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2Search in Google Scholar

[4] C. J. Bell, L. J. Gray, A. J. Charlton-Perez, M. Joshi, and A. A. Scaife, Stratospheric communication of El Niño teleconnections to European winter. J. Climate 22 (2009), No. 17, 4083–4096.10.1175/2009JCLI2717.1Search in Google Scholar

[5] J. A. Carton, G. A. Chepurin, and L. Chen, SODA3: A new ocean climate reanalysis. J. Climate 31 (2018), No. 17, 6967–6983.10.1175/JCLI-D-18-0149.1Search in Google Scholar

[6] S. C. Chen and K. E. Trenberth, Orographically forced planetary waves in the Northern Hemisphere winter: Steady state model with wave-coupled lower boundary formation. J. Atmos. Sci. 45 (1988), 657–680.10.1175/1520-0469(1988)045<0657:OFPWIT>2.0.CO;2Search in Google Scholar

[7] W. J. Collins, N. Bellouin, M. Doutriaux-Boucher, N. Gedney, P. Halloran, T. Hinton, J. Hughes, C. D. Jones, M. Joshi, S. Liddicoat, G. Martin, F. O’Connor, J. Rae, C. Senior, S. Sitch, I. Totterdell, A. Wiltshire, and S. Woodward, Development and evaluation of an Earth-system model – HadGEM2. Geosci. Model Dev. 4 (2011), 1051–1075.10.5194/gmd-4-1051-2011Search in Google Scholar

[8] T. Cropper, E. Hanna, M. A. Valente, and T. Jónsson, A daily Azores–Iceland North Atlantic oscillation index back to 1850. Geoscience Data J. 2 (2015), No. 1, 12–24.10.1002/gdj3.23Search in Google Scholar

[9] M. Dobrynin, D. Domeisen, W. Muller, L. Bell, S. Brune, F. Bunzel, A. Dusterhus, K. Frohlich, H. Pohlmann, and J. Baehr, Improved teleconnection-based dynamical seasonal predictions of boreal winter. Geophys. Res. Lett. 45 (2018), No. 8, 3605–3614.10.1002/2018GL077209Search in Google Scholar

[10] J. García-Serrano, C. Frankignoul, G. Gastineau, and A. de la Càmara, On the predictability of the winter Euro-Atlantic climate: lagged influence of autumn Arctic sea ice. J. Climate 28 (2015), No. 13, 5195–5216.10.1175/JCLI-D-14-00472.1Search in Google Scholar

[11] A. V. Glazunov, N. A. Diansky, and V. P. Dymnikov, Localized and global responses of the atmospheric circulation to midlatitude sea surface temperatutre anomalies. Izv. Atmos. Ocean Physics 37 (2001), No. 5, 537–555.Search in Google Scholar

[12] B. Hoskins, The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly J. Royal Meteorol. Soc. 139 (2013), 573–584.10.1002/qj.1991Search in Google Scholar

[13] J. W. Hurrell, Decadal trends in the North Atlantic Oscillation. Regional temperatures and precipitation. Science 269 (1995), No. 5224, 676–679.10.1126/science.269.5224.676Search in Google Scholar

[14] J. W. Hurrell and C. Deser, North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst. 78 (2009), No. 1, 28–41.10.1016/j.jmarsys.2008.11.026Search in Google Scholar

[15] J. Hurrell, Y. Kushner, G. Ottersen, and M. Visbeck, The North Atlantic Oscillation: Climatic significance and environmental impact. In: An Overview of the North Atlantic Oscillation (Eds. J. Hurrell, Y. Kushner, G. Ottersen, and M. Visbeck). American Geophysical Union, Washington, DC, 2003, pp. 1–35.Search in Google Scholar

[16] P. D. Jones, T. Jónsson, and D. Wheeler, Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Int. J. Climatol. 17 (1997), 1433–1450.10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-PSearch in Google Scholar

[17] Y. Kim, K. Kim, and B. Kim, Physical mechanisms of European snow cover variability and its relationship to the NAO. Climate Dyn. 40 (2013), 1657–1669.10.1007/s00382-012-1365-5Search in Google Scholar

[18] E. W. Kolstad and M. Arthun, Seasonal prediction from arctic sea surface temperatures: Opportunities and pitfalls. J. Climate 31 (2018), No. 20, 8197–8210.10.1175/JCLI-D-18-0016.1Search in Google Scholar

[19] A. S. Krovnin, Conjugacy of climate fluctuations between northern parts of Atlantic and Pacific oceans. Trudy VNIRO 180 (2020), 23–43 (in Russian).10.36038/2307-3497-2020-180-23-43Search in Google Scholar

[20] A. Kumar and M. Chen, Causes of skill in seasonal predictions of the Arctic Oscillation. Clim. Dyn. 51 (2018), 2397–2411.10.1007/s00382-017-4019-9Search in Google Scholar

[21] D. J. Leathers, B. Yarnal, and M. A. Palecki, The Pacific/North American teleconnection pattern and United States climate. Part I: Regional temperature and precipitation associations. J. Climate 4 (1991), 517–528.10.1175/1520-0442(1991)004<0517:TPATPA>2.0.CO;2Search in Google Scholar

[22] J. Li and J. X. Wang, A new North Atlantic Oscillation index and its variability. Advances in Atmospheric Sciences 20 (2003), No. 5, 661–676.10.1007/BF02915394Search in Google Scholar

[23] H. Lin, G. Brunet, and J. S. Fontecilla, Impact of the Madden–Julian Oscillation on the intraseasonal forecast skill of the North Atlantic Oscillation. Geophys. Res. Lett. 37 (2010), No. 19, L19803.10.1029/2010GL044315Search in Google Scholar

[24] F. Maruyama, The relation among the solar activity, the total ozone, QBO, NAO, and ENSO by wavelet-based multifractal analysis. J. Appl. Math. Phys. 6 (2018), 1301–1314.10.4236/jamp.2018.66109Search in Google Scholar

[25] R. M. McInturff, Stratospheric warmings: Synoptic, dynamic and general-circulation aspects. NASA Reference Publ. 1017 (1978), 1–174.Search in Google Scholar

[26] E. S. Nesterov, Variabililty of atmosphere and ocean characteristics in the Atlantic–European region in years of El Niño and La Niña events. Meteorologiya i Gidrologiya 8 (2000), 74–83 (in Russian).Search in Google Scholar

[27] E. S. Nesterov, North Atlantic Oscillation: Atmosphere and Ocean. Triada, Moscow, 2013 (in Russian).Search in Google Scholar

[28] Y. J. Orsolini, R. Senan, F. Vitart, G. Balsamo, A. Weisheimer, and F. J. Dolbas-Reyes, Influence of the Eurasian snow on the negative North Atlantic oscillation in subseasonal forecasts of the cold winter 2009/2010. Climate Dyn. 47 (2016), 1325–1334.10.1007/s00382-015-2903-8Search in Google Scholar

[29] J. G. Pinto and M. Reyers, The variable link between PNA and NAO in observations and in multi-century CGCM simulations. Climate Dynamics 36 (2011), No. 1–2, 337–354.10.1007/s00382-010-0770-xSearch in Google Scholar

[30] A. B. Polonsky, D. V. Basharin, E. N. Voskresenskaya, S. J. Worley, and A. V. Yurovsky, Relationship between the North Atlantic Oscillation, Euro-Asian climate anomalies and Pacific variability. Pacific Oceanography 2 (2004), No. 1-2, 52–66.Search in Google Scholar

[31] J. D. Price, S. Vosper, A. Brown, A. Ross, P. Clark, F. Davies, V. Horlacher, B. Claxton, J. R. McGregor, J. S. Hoare, B. Jemmett-Smith, and P. Sheridan, COLPEX: field and numerical studies over a region of small hills. B. Amer. Meteorol. Soc. 92 (2011), 1636–1650.10.1175/2011BAMS3032.1Search in Google Scholar

[32] A. W. Robertson , C. R. Mechoso, and Y.- J. Kim, The influence of Atlantic sea surface temperature anomalies on the North Atlantic Oscillation. J. Climate 13 (2000), No. 1, 122–138.10.1175/1520-0442(2000)013<0122:TIOASS>2.0.CO;2Search in Google Scholar

[33] S. Rodionov and R. Assel, A new look at the Pacific/North American index. Geophys. Res. Lett. 28 (2001), No. 8, 1519–1522.10.1029/2000GL012185Search in Google Scholar

[34] M. J. Rodwell, D. P. Rowell, and C. K. Folland, Simulating the winter North Atlantic Oscillation and European climate, 1947–1997. Research Activities in Atmospheric and Oceanic Modelling 28 (1999), 633–634.Search in Google Scholar

[35] J. C. Rogers, Patterns of low-frequency monthly sea level pressure variability (1899–1986) and associated wave cyclone frequencies. J. Climate 3 (1990), No. 12, 1364–1379.10.1175/1520-0442(1990)003<1364:POLFMS>2.0.CO;2Search in Google Scholar

[36] A. A. Scaife, A. Arribas, E. Blockley, A. Brookshaw, R. T. Clark, N. Dunstone, R. Eade, D. Fereday, C. K. Folland, M. Gordon, L. Hermanson, J. R. Knight, D. J. Lea, C. MacLachlan, A. Maidens, M. Martin, A. K. Peterson, D. Smith, M. Vellinga, E. Wallace, J. Waters, and A. Williams, Skilful long range prediction of European and North American winters. Geophys. Res. Lett. 41 (2014), 2514–2519.10.1002/2014GL059637Search in Google Scholar

[37] A. A. Scaife, D. Copsey, C. Gordon, C. Harris, T. Hinton, S. Keeley, A. O’Neill, M. Roberts, and K. Williams, Improved Atlantic winter blocking in a climate model. Geophys. Res. Lett. 38 (2011), L23703.10.1029/2011GL049573Search in Google Scholar

[38] A. Shabbar and M. Khandekar, The impact of El Niño-Southern Oscillation on the temperature field over Canada. Atmosphere-Ocean. 34 (1996), No. 2, 401–416.10.1080/07055900.1996.9649570Search in Google Scholar

[39] S.-W. Son, Y. Lim, C. Yoo, H. H. Hendon, and J. Kim, Stratospheric control of the Madden–Julian oscillation. J. Climate 30 (2017), No. 6, 1909–1922.10.1175/JCLI-D-16-0620.1Search in Google Scholar

[40] M. A. Tolstykh, E. M. Volodin, S. V. Kostrykin, R. Y. Fadeev, V. V. Shashkin, N. N. Bogoslovskii, R. M. Vilfand, D. B. Kiktev, T. V. Krasjuk, V. G. Mizyak, A. V. Shlyaeva, J.-F. Geleyn, I. N. Ezau, and A. Y. Yurova, Development of the multiscale version of the SL-AV global atmosphere model. Russian Meteorology and Hydrology 40 (2015), No. 6, 374–382.10.3103/S1068373915060035Search in Google Scholar

[41] P. N. Vargin, E. M. Volodin, and S. V. Kostrykin, Analysis of simulation stratosphere-troposphere dynamical coupling with the INM-CM5 climate model. Russian Meteorology and Hydrology 43 (2018), No. 11, 780–786.10.3103/S1068373918110092Search in Google Scholar

[42] E. M. Volodin, E. V. Mortikov, S. V. Kostrykin, V. Ya. Galin, V. N. Lykossov, A. S. Gritsun, N. A. Diansky, A. V. Gusev, and N. G. Iakovlev, Simulation of the present day climate with the climate model INMCM5. Clim. Dyn. 49 (2017), 3715–3734.10.1007/s00382-017-3539-7Search in Google Scholar

[43] V. V. Vorobyeva and E. M. Volodin, Experimental studies of seasonal weather predictability based on the INM RAS climate model. Matem. Mod. 32 (2020), No. 11, 47–58 (in Russian).10.1134/S2070048221040232Search in Google Scholar

[44] V. V. Vorobyeva and E. M. Volodin, Investigation of the structure and predictability of the first mode of stratospheric variability based on the INM RAS climate model. Russian Meteorology and Hydrology 43 (2018), No. 11, 737–742.10.3103/S1068373918110043Search in Google Scholar

[45] J. M. Wallace and D. S. Gutzler, Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev. 109 (1981), 784–812.10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2Search in Google Scholar

[46] M. Wegmann, M. Rohrer, M. Santolaria-Otin, and G. Lohmann, Eurasian autumn snow link to winter North Atlantic oscillation is strongest for Arctic warming periods. Earth Syst. Dynam. 11 (2020), 509–524.10.5194/esd-11-509-2020Search in Google Scholar

[47] A. Weisheimer, N. Schaller, C. O’Reilly, D. A. MacLeod, and T. Palmer, Atmospheric seasonal forecasts of the twentieth century: Multi-decadal variability in predictive skill of the winter North Atlantic Oscillation (NAO) and their potential value for extreme event attribution. Quarterly J. Royal Meteorol. Soc. 143 (2017), No. 703, 917–926.10.1002/qj.2976Search in Google Scholar

[48] Qigang Wu, Haibo Hu, and Lujun Zhang, Observed influences of autumn-early einter Eurasian snow cover anomalies on the hemispheric PNA-like variability in winter. J. Climate 24 (2011), 2017–2023.10.1175/2011JCLI4236.1Search in Google Scholar

[49] Z. Q. Zhou, S. P. Xie, X. T. Zheng, Q. Liu, and H. Wang, Global warming–induced changes in El Niño teleconnections over the North Pacific and North America. J. Clim. 27 (2014), 9050–9064.10.1175/JCLI-D-14-00254.1Search in Google Scholar

Received: 2020-11-11
Accepted: 2021-02-01
Published Online: 2021-04-08
Published in Print: 2021-04-08

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/rnam-2021-0010/html
Scroll to top button