Skip to main content
Log in

Numerical Simulation of Seismic Wave Propagation in Coastal Zones

  • GEOPHYSICS
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

The problem of tsunami warning and the use of the grid-characteristic method developed for studying wave processes in heterogeneous media is addressed. A multilayer geological model with curved boundaries and contrasting elastic parameters is considered. Various seismic survey methods, as well as different geometries of the boundaries, different values of rock densities, and various longitudinal and shear wave velocities, are examined. The boundary value problem is numerically solved jointly for the elastic and acoustic wave equations (seismic wave propagation in rocks and water layer, respectively). We use the numerical grid-characteristic method with combined structured curvilinear and regular computational grids. The wave velocity fields (velocity as derivative of displacement) and stress fields are calculated and analyzed. Synthetic seismograms are calculated for the coastal zone. It is found that some specific features of seismograms and some wave modes can be used for tsunami warning. The optimal parameters of seismic surveying are determined. Numerical simulation of wave propagation effects is used for these purposes. The proposed numerical grid-characteristic method can be used in forward numerical modeling in order to interpret seismograms recorded in the coastal zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. O. V. Pavlenko, Dokl. Earth Sci. 491 (2), 271–277 (2020).

    Article  Google Scholar 

  2. A. L. Sobisevich and D. A. Presnov, Dokl. Earth Sci. 492 (2), 451–455 (2020).

    Article  Google Scholar 

  3. T. Konuk and J. Shragge, Geophysics 85 (2), T45–T55 (2020).

    Article  Google Scholar 

  4. P. Moczo, J. Kristek, V. Vavrycuk, R. J. Archuleta, and L. Halada, Bull. Seismol. Soc. Am. 92, 3042–3066 (2002).

    Article  Google Scholar 

  5. V. Lisitsa, V. Tcheverda, and C. Botter, J. Comput. Phys. 311, 142–157 (2016).

    Article  Google Scholar 

  6. L. C. Wilcox, G. Stadler, C. Burstedde, and O. Ghattas, J. Comput. Phys. 229 (24), 9373–9396 (2010).

    Article  Google Scholar 

  7. D. Komatitsch and J. Tromp, Geophys. J. Int. 139 (3), 806–822 (1999).

    Article  Google Scholar 

  8. G. I. Dolgikh, Shengchun Piao, S. S. Budrin, Yang Song, S. G. Dolgikh, V. V. Ovcharenko, V. A. Chupin, S. V. Yakovenko, Yang Dong, Xiaohan Wang, and V. A. Shvets, Dokl. Earth Sci. 491 (2), 285 (2020).

    Article  Google Scholar 

  9. D. N. Krasnoshchekov, V. M. Ovchinnikov, and O. A. Usoltseva, Dokl. Earth Sci. 488 (2), 1186–1190 (2019).

    Article  Google Scholar 

  10. K. M. Magomedov and A. S. Kholodov, Zh. Vychisl. Mat. Mat. Fiz. 9 (2), 373–386 (1969).

    Google Scholar 

  11. A. V. Favorskaya, M. S. Zhdanov, N. I. Khokhlov, and I. B. Petrov, Geophys. Prospect. 66 (8), 1485–1502 (2018).

    Article  Google Scholar 

  12. A. V. Favorskaya, N. I. Khokhlov, and I. B. Petrov, Lobachevskii J. Math. 41 (4), 512–525 (2020).

    Article  Google Scholar 

  13. A. V. Favorskaya and I. B. Petrov, Dokl. Earth Sci. 466 (2), 214 (2016).

    Article  Google Scholar 

  14. A. V. Favorskaya and I. B. Petrov, Dokl. Math. 95 (4), 287–290 (2017).

    Article  Google Scholar 

  15. A. V. Favorskaya and I. B. Petrov, Dokl. Earth Sci. 481 (2), 1070–1073 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed within the framework of the government-supported project “Mathematical Modeling of Dynamic Processes in Deformable and Responsive Media with the Use of Multiprocessor Computer Systems” (Section no. 0065-2019-0005, reg. no. AAAA-A19-119011590092-6) run by the Scientific Research Institute of System Analysis, Russian Academy of Sciences, under the Fundamental Research Program (no. 47 GP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Petrov.

Additional information

Translated by B. Shubik

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, I.B., Favorskaya, A.V. Numerical Simulation of Seismic Wave Propagation in Coastal Zones. Dokl. Earth Sc. 497, 252–254 (2021). https://doi.org/10.1134/S1028334X21010165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X21010165

Keywords:

Navigation