Skip to main content
Log in

Noble Metal Ion Embedded Nanocomposite Glass Materials for Optical Functionality of UV–Visible Surface Plasmon Resonance (SPR) Surface-Enhanced Raman Scattering (SERS) X-ray and Electron Microscopic Studies: An Overview

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Raman spectroscopy (RS) is a modern scientific analytic fingerprint technique that detects, examines, and analyzes the constituent chemical composition of various substances (solid–liquid–gas and plasmons) through interaction of laser light with matter. It is intelligent to present qualitative and quantitative information about the sample’s chemical composition, polymorphism, phase, crystallinity, stress/strain, and contamination and impurity/defects. The key mechanism is profoundly based on the Raman principle that was originally named after and discovered by the Indian primer scientist C.V Raman, who won the Nobel prize after the exposure of the Raman effect [Raman 1916; Krishnan 1928]. This review briefly presents the physical origin of Raman scattering explaining the key classical and quantum mechanical concepts. Molecular variations of the Raman effect will also be considered, including resonance, coherent, and enhanced Raman scattering. Further, we discuss the molecular origins of prominent bands often found in the Raman spectra of SPR (surface plasmon resonance) samples. Finally, we examine the several active variations of Raman spectroscopy techniques in practice, looking at their applications, strengths, and challenges. This review is intended to be a starting resource for scientists new to Raman spectroscopy, providing theoretical background and practical examples as the foundation for further study and exploration of SPR and surface-enhanced Raman spectroscopy (SERS) techniques. While RS is now used in biology and medicine for novel pandemic diseases, Raman spectroscopy found its first applications in physics and chemistry and was mainly used to study vibrations and structure of molecules. One early factor limiting the implementation of RS was the weak scattering signal. Large intensities of monochromatic light are required to excite a detectable signal. This requirement became much easier to realize following the invention of the laser in 1960. Over the past decades, Raman spectroscopy has been prominently exploited better in biological applications, where it is able to detect and analyze DNA and RNA molecules. Generally, there are four main types of Raman spectroscopy, but the most feasible in biological field is the SERS. The noble metal nanoclusters play an important role for nanobiomedical and modern optical devices. The present review explored the single and bi-metallic (silver (Ag), copper (Cu), silver–copper (Ag–Cu), and copper–silver (Cu–Ag)) nanoclusters embedded in soda–lime glass that is prepared by ion-exchange method. The ion-exchanged glasses are annealed by different methods (furnace and laser). These samples exhibit surface plasmon and surface enhancement effect. Optical absorption spectroscopic analysis was done on the metal nanocluster composite glasses, and the spectra are well studied as a function of various post ion-exchange treatments and different sizes. As size effects are an essential aspect of nanomaterials, the effect of size on the optical absorption metal nanoclusters was studied using theoretical models and correlated with the experimental results. Formation of embedded bi-metallic nanoclusters is also achieved by furnace annealing or laser irradiation of the sequential Cu–Ag and Ag–Cu ion-exchanged samples. The formations of core–shell structures or alloying between the metal species were confirmed from the optical absorption spectra. This review analyzes the influence of different parameters (nanocluster size, morphology, and composition as well as surface plasmon resonance (SPR) wavelength) on SERS. Experimental study of SERS substrates consists of silver, copper, and alloyed copper–silver (Cu–Ag) or silver–copper (Ag–Cu) nanoclusters of various sizes and compositions with the aim of finding the optimal conditions for fabricating substrates with maximum SERS enhancement factors. The primary aim of this work is focused on the development of novel SERS-active substrates and their applications in various research fields. The basic principle is borrowing the rough feature from the supported under layer to produce the rough noble meal surface and achieve the surface enhancement effect. The prepared substrates meet the following requirements, such as stable, reproducible, possessing large enhancement factor, and easiness for preparation. SERS opens up exciting opportunities in the field of biophysical and biomedical spectroscopy, where it provides ultrasensitive detection and characterization of biophysically/biomedically relevant molecules and processes as well as a vibrational spectroscopy with extremely high spatial resolution. This review explains many fundamental features of SERS and then describes the use of embedded nanocluster for the fabrication of highly reproducible and robust SERS substrates. The present review discusses the synthesis of single and bi-metallic nanocomposite glasses by the commercial ion-exchange technique followed by the suitable thermal treatments like furnace and laser annealing. Post treatment, the samples were subjected to various studies like optical absorption and SERS, FESEM, photoluminescence, and grazing incidence X-ray diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data Availability

Research samples and scientific data of the compounds are available from the authors.

Code Availability

Based on the request, this will be provided by the corresponding author.

References

  1. Raman CV (1916) XLIII. On the “wolf-note” in bowed stringed instruments. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 32 (190): 391–395 https://doi.org/10.1080/14786441608635584

  2. Krishnan KS (1928) The Raman effect in crystals. Nature 122(3074):477–478. https://doi.org/10.1038/122477a0

    Article  CAS  Google Scholar 

  3. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science, 271, 933–937. https://doi.org/10.1126/science.271.5251.933

  4. Alivisatos AP, Harris TD, Brus LE, Jayaraman A (1988) Resonance Raman scattering and optical absorption studies of CdSe microclusters at high pressure. J Chem Phys 89:5979. https://doi.org/10.1063/1.455466

    Article  CAS  Google Scholar 

  5. Alivisatos AP, Harris AL, Levinos NJ, Steigerwald ML, Brus LE (1988) Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum. J Chem Phys 89:4001. https://doi.org/10.1063/1.454833

    Article  CAS  Google Scholar 

  6. Gehr RJ, Boyd RW (1996) Optical Properties of Nanostructured Optical Materials. Chem Mater 8(8):1807–1819. https://doi.org/10.1021/cm9600788

    Article  CAS  Google Scholar 

  7. Kreibig U, Vollmer M (1995) Optical properties of metal 1165 clusters, (Springer Series in Materials Science, vol 25. Springer-Verlag, Berlin

    Google Scholar 

  8. Vijayalakshmi S, George MA, Grebel H (1997) Nonlinear optical properties of silicon nanoclusters. Appl Phys Lett 70:708. https://doi.org/10.1063/1.118246

    Article  CAS  Google Scholar 

  9. Metiuin H, Chang RK, Furtak TE (1982) (Surface enhance Raman scattering P.1 Plenum, New 1169 York 1982)

  10. Suëtaka W, Yates JT (1995) Surface enhanced Raman scattering. In: Surface infrared and Raman spectroscopy. Methods of surface characterization, Vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0942-8_6; Furtak TE, Chang RK, eds., Surface enhanced Raman scattering, Plenum, New York (1982)

  11. Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 47:783–826. https://doi.org/10.1103/RevModPhys.57.783

    Article  Google Scholar 

  12. Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27:241–250. https://doi.org/10.1039/A827241Z

    Article  CAS  Google Scholar 

  13. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106. https://doi.org/10.1126/science.275.5303.1102

    Article  CAS  Google Scholar 

  14. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667–1670. https://doi.org/10.1103/PhysRevLett.78.1667

    Article  CAS  Google Scholar 

  15. Wang T, Hu X, Dong S (2006) Photochemical synthesis and self-assembly of gold nanoparticles. J Phys Chem 110:16930–16936. https://doi.org/10.1016/j.colsurfa.2007.06.043

    Article  CAS  Google Scholar 

  16. Mulvaney SP, He L, Natan MJ, Keating CD (2003) Three-layer substrates for surface-enhanced Raman scattering: preparation and preliminary evaluation. J Raman Spect 34:163–171. https://doi.org/10.1002/jrs.972

    Article  CAS  Google Scholar 

  17. Rivas L, Sanchez-Cortes S, Garcia-Ramos JV, Morcillo G (2000) Mixed silver/gold colloids: a study of their formation, morphology, and surface-enhanced Raman activity. Langmuir 16:9722–9728. https://doi.org/10.1021/la000557s

  18. Fleger Y, Rosenbluh M (2009) Surface plasmons and surface enhanced Raman spectra of aggregated and alloyed gold-silver nanoparticles. Research Letters in Optics 2009, Article ID 475941, p. 5. https://doi.org/10.1155/2009/475941

  19. Jana NR (2003) Silver coated gold nanoparticles as new surface enhanced Raman substrate at low analyte concentration. Analyst 128:954–956. https://doi.org/10.1039/B302409A

    Article  CAS  Google Scholar 

  20. Albrecht MG, Evans JF, Creighton JA (2007) The SERS and TERS effects obtained by gold droplets on top of Si nanowires. Nano Lett 7(1):75–80. https://doi.org/10.1021/nl0621286

  21. Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectro-electrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electro Anal Chem 84:1–20. https://doi.org/10.1016/S0022-0728(77)80224-6

  22. Hunyadi SE, Murphy CJ (2006) Bimetallic silver–gold nanowires: fabrication and use in surface-enhanced Raman scattering. J Mater Chem 16:3929–3935. https://doi.org/10.1039/B607116C

    Article  CAS  Google Scholar 

  23. Schatz GC, Young MA, Van Duyne RP (2006) Electromagnetic mechanism of SERS. In: Kneipp K, Moskovits M, Kneipp H (eds) Surface-enhanced Raman scattering. Top Appl Phys Vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33567-6_2

  24. Persson BNJ (1981) On the theory of surface-enhanced Raman scattering Chem. Phys Lett 82:561–565. https://doi.org/10.1016/0009-2614(81)85441-3

    Article  CAS  Google Scholar 

  25. Kambhampati P, Child CM, Foster MC, Campion A (1998) On the chemical mechanism of surface enhanced Raman scattering: experiment and theory. J Chem Phys 108:5013–5026. https://doi.org/10.1063/1.475909

    Article  CAS  Google Scholar 

  26. Lombardi JR, Birke RL, Lu T, Xu J (1986) Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions. J Chem Phys 84:4174. https://doi.org/10.1063/1.450037

    Article  CAS  Google Scholar 

  27. Wang DS, Kerker M, Chew HW (1980) Raman and fluorescent scattering by molecules embedded in dielectric cylinders. Appl Opt 19:2315–2328. https://doi.org/10.1364/AO.19.000044

    Article  CAS  PubMed  Google Scholar 

  28. Wang DS, Kerker M (1981) Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids. Phys Rev B 24:1777–1790. https://doi.org/10.1103/PhysRevB.24.1777

    Article  CAS  Google Scholar 

  29. Li K, Li X, Stockman MI, Bergman DJ (2005) Surface plasmon amplification by stimulated emission in nanolenses. Phys Rev B 71:115409. https://doi.org/10.1103/PhysRevB.71.115409

  30. Li K, Stockman MI, Bergman DJ (2005) Enhanced second harmonic generation in a self-similar chain of metal nanospheres. Phys Rev B 72:153401. https://doi.org/10.1103/PhysRevB.72.153401

    Article  CAS  Google Scholar 

  31. Li K, Stockman MI, Bergman DJ (2006) Self-similar chain of metal nanospheres as an efficient nanolens. Phys Rev Lett 97:079702. https://doi.org/10.1103/PhysRevLett.91.227402

    Article  CAS  Google Scholar 

  32. Chew H, Kerker M (1985) Surface-enhanced Raman scattering from metal films containing dielectric cavities. J Opt Soc Am B 2(7):1025. https://doi.org/10.1364/josab.2.001025

    Article  CAS  Google Scholar 

  33. García-Vidal FJ, Pendry JB (1996) Collective theory for surface enhanced Raman scattering. Phys Rev Lett 77:1163. https://doi.org/10.1103/PhysRevLett.77.1163

    Article  PubMed  Google Scholar 

  34. Gersten J, Nitzan A (1991) Radiative properties of solvated molecules in dielectric clusters and small particles. J Chem Phys 95:686. https://doi.org/10.1063/1.461820

    Article  CAS  Google Scholar 

  35. Kerker M, Wang D-S, Chew H (1980) Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles. Appl Opt 19:4159–4174. https://doi.org/10.1364/AO.19.003373

    Article  CAS  PubMed  Google Scholar 

  36. Boerio FJ (1989) Surface-enhanced Raman scattering. Thin Solid Films 181(1–2):423–433. https://doi.org/10.1016/0040-6090(89)90511-7

    Article  CAS  Google Scholar 

  37. Gonella F, Mazzoldi P (2000) Handbook of nanostructured materials and nanotechnology. Vol 4, edited by Nalwa HS (Academic, San Diego), pp. 81–158. https://doi.org/10.1016/B978-012513760-7/50069-1

  38. Halperin WP (1986) Quantum size effects in metal particles. Rev Mod Phys 58:533. https://doi.org/10.1103/RevModPhys.58.533

    Article  CAS  Google Scholar 

  39. Pinchuk A, Kreibig U, Hilger A (2004) Optical properties of metallic nanoparticles: influence of interface effects and inter-band transitions. Surf Sci 557:269. https://doi.org/10.1016/j.susc.2004.03.056

  40. Maxwell-Garnett JC (1904) Colors in metal glasses and in metallic films. Philos Trans R Soc A 203:385. https://doi.org/10.1063/1.1782121

    Article  Google Scholar 

  41. Doremus RH (1966) Optical properties of thin metallic films in island form. J Appl Phys 37:2775. https://doi.org/10.1063/1.1782121

    Article  Google Scholar 

  42. Lorentz L (1880) About the refraction constant. Ann Phys 11:70. https://doi.org/10.1002/andp.18802470905

    Article  Google Scholar 

  43. Debye P (1909) Collotype printing on balls of any material. Ann Phys 30:57. https://doi.org/10.1002/andp.19093351103

    Article  Google Scholar 

  44. Mie G (1908) Contributions to the optics of cloudy media, especially colloidal metal solutions. Ann Phys 330:377–445. https://doi.org/10.1002/andp.19083300302

    Article  Google Scholar 

  45. Steubing W (1908) About the optical properties of colloidal gold solutions. Ann Phys 26:329. https://doi.org/10.1016/0021-9797(79)90231-5

    Article  CAS  Google Scholar 

  46. Kreibig U, Zacharias P (1970) Surface plasma resonances in small spherical silver and gold particles. Z Phys A-Hadron Nucl 231:128–143. https://doi.org/10.1007/BF01392504

    Article  CAS  Google Scholar 

  47. Kreibig U (1997) Handbook of optical properties. II: optics of small particles, interface and surfaces. (edited by R.E. Hummel and P. Wissmann, Vol 2, 145 CRC Press, New York)

  48. Fowler WB (1968) Physics of color centers, Publisher: New York, Academic Press https://doi.org/10.4236/am.2014.54056 5,572

  49. Poulsen RG, Randles DL, Springford M (1974) Studies of conduction electron scattering in copper using the de Haas-van Alphen effect. J Phys F: Met Phys 4:981. https://doi.org/10.1088/0305-4608/4/7/006

    Article  CAS  Google Scholar 

  50. Aspnes DE (1982) Local-field effects and effective-medium theory: a microscopic perspective. Am J Phys 50:704. https://doi.org/10.1119/1.12734

    Article  Google Scholar 

  51. van de Hulst HC (1981) Light scattering by small particles, Dover, New Yorkhttps://doi.org/10.1002/actp.1984.010350426

  52. Maxwell-Garneet JC (1906) Colours in metal glasses, in metallic films, and in metallic solutions II. Philos Trans 205:237–288. https://doi.org/10.1364/JOSAA.XX

    Article  Google Scholar 

  53. Okada Y (2008) Efficient numerical orientation averaging of light scattering properties with a quasi-Monte-Carlo method. J Quant Spectrosc Radiat Transf 109(9):1719–1742. https://doi.org/10.1016/j.jqsrt.2008.01.002

  54. Kaganovskii YS, Paritskaya LN, Bogdanov VV (2008) Lateral propagation of intermetallic phases in coarse- and nano-grained Cu/Sn diffusion couples. Powder Metall Met Ceram 47:652–659. https://doi.org/10.1007/s11106-009-9074-2

    Article  CAS  Google Scholar 

  55. Gupta R, Dyer MJ, Weimer WA (2002) Preparation and characterization of surface plasmon resonance tunable gold and silver films. J Appl Phys 92:5264. https://doi.org/10.1063/1.1511275

    Article  CAS  Google Scholar 

  56. Jeanmaire DL, Suchanski MS, Van Duyne RP (1975) Resonance Raman spectroelectrochemistry. I. Tetracyanoethylene anion radical. J Am Chem Soc 97(7):1699–1707. https://doi.org/10.1021/ja00840a013

  57. Fleischmann M, Hendra PJ, McQuillan A (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phy Lett 26:163. https://doi.org/10.1016/0009-2614(74)85388-1

    Article  CAS  Google Scholar 

  58. Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry. J Electroanal Chem Interfacial Electrochem 84(1):1–20. https://doi.org/10.1016/S0022-0728(77)80224-6

  59. Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99(15):5215–5217. https://doi.org/10.1021/ja00457a071

  60. Tian ZQ, Ren B, Wu DY (2006) SERS from transition metals and excited by ultraviolet light, In: Kneipp K, Moskovits M, Kneipp H (Eds.) Surface-enhanced Raman scattering. Top Appl Phys Vol 103. 9463. ISBN: 978–3–540–33566–5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33567-6_7

  61. Tian ZQ, Ren B, Li JF, Yang ZL (2007) Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem Commun 34:3514. https://doi.org/10.1039/B616986D

    Article  Google Scholar 

  62. Liao PF, Wokaun A (1982) Lightning rod effect in surface enhanced Raman scattering. J Chem Phys 76:751. https://doi.org/10.1063/1.442690

    Article  CAS  Google Scholar 

  63. Orendorff CJ, Gole A, Sau TK, Murphy CJ (2005) Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence. Anal Chem 77:3261. https://doi.org/10.1021/ac048176x

    Article  CAS  Google Scholar 

  64. Hu JQ, Chen Q, Xie ZX, Han GB, Wang RH, Ren B (2004) A simple and effective route for the synthesis of crystalline silver nanorods and nanowires. Adv Funct Mater 14:183. https://doi.org/10.1002/adfm.200304421

    Article  CAS  Google Scholar 

  65. Liu M (2020) Growth of nanostructured silver flowers by metal-mediated catalysis for surface-enhanced Raman spectroscopy application. ACS Omega 5(50):32655–32659. https://doi.org/10.1021/acsomega.0c05021

  66. Wang HH, Liu CY, Wu SB, Liu NW, Peng CY, Chan TH, Hsu CF, Wang JK, Wang YL (2006) Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps. Adv Mater 18:491. https://doi.org/10.1002/adma.200501875

    Article  CAS  Google Scholar 

  67. Tao A, Kim F, Hess C, Goldberger J, He R, Sun Y, Xia Y, Yang P (2003) Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett 3:1229. https://doi.org/10.1021/nl0344209

    Article  CAS  Google Scholar 

  68. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267. https://doi.org/10.1146/annurev.physchem.58.032806.104607

    Article  CAS  PubMed  Google Scholar 

  69. Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105(24):5599–5611. https://doi.org/10.1021/jp010657m

  70. Manikandan P, Manikandan D, Manikandan E, Ferdinand AC (2014) Surface enhanced Raman scattering (SERS) of silver ions embedded nanocomposite glass. Spectrochim Acta A Mol Biomol Spectrosc 124:203–207. https://doi.org/10.1016/j.saa.2014.01.033

  71. Colomban P, Treppoz F (2001) Identification and differentiation of ancient and modern European porcelains by Raman macro- and micro-spectroscopy. J Raman Spectrosc 32(2):93–102. https://doi.org/10.1002/jrs.678

    Article  CAS  Google Scholar 

  72. Mysen BO, Virgo D, Scarfe C (1980) Relations between the anionic structure and viscosity of silicate melts — a Raman spectroscopic study. Am Minerol 65:690–710. https://pubs.geoscienceworld.org/ammin/issue/65/7-8

  73. Seifert F, Mysen BO, Virgo D (1982) Three-dimensional net-work structure in the systems SiO2-NaAlO2, SiO2-CaAl2O4 and SiO2-MgAl2O4. Am Minerol 67:696–717. https://pubs.geoscienceworld.org/ammin/issue/67/7-8

  74. McMillan P (1984) Structural studies of silicate glasses and melts - applications and limitations of Raman spectroscopy. Am Minerol 69:622–644. https://pubs.geoscienceworld.org/ammin/issue/69/7-8

  75. Colomban P, Schreiber HD (2005) Raman signature modification induced by copper nanoparticles in silicate glass. J Raman Spectroscopy 36:884–890. https://doi.org/10.1002/jrs.1379

    Article  CAS  Google Scholar 

  76. Smith E, Dent G (2005) Modern Raman spectroscopy: a practical approach. Wiley, England, ISBN 0-471-49668-5. www.wileyeurope.com

  77. Mcgeehin P, Hooper A (1977) Fast ion conduction materials. J Mater Sci 12:1–27. https://doi.org/10.1007/BF00738467

    Article  CAS  Google Scholar 

  78. Pérez-Villar S, Rubio J, Oteo JL (2008) Study of color and structural changes in silver painted medieval glasses. 354(17):1833–1844. https://doi.org/10.1016/j.jnoncrysol.2007.10.008

  79. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113(18):6378–6396. https://doi.org/10.1021/jp810292n

  80. Robinet L, Coupry C, Hall KEC (2006) The use of Raman spectrometry to predict the stability of historic glasses. J Raman Spectrosc 37(7):789–797. https://doi.org/10.1002/jrs.1540

    Article  CAS  Google Scholar 

  81. McMillan P (1984) A Raman study of pressure-densified vitreous silica. J Chem Phys 81:4234. https://doi.org/10.1063/1.447455

    Article  CAS  Google Scholar 

  82. Furukawa T, Fox KE, White WB (1981) Raman spectroscopic investigation of the structure of silicate glasses. III. Raman intensities and structural units in sodium silicate glasses. J Chem Phys 75:3226. https://doi.org/10.1063/1.442472

  83. Colomban P (2004) Raman spectrometry, a unique tool to analyze and classify ancient ceramics and glasses. Appl Phys A 79:167–170. https://doi.org/10.1007/s00339-004-2512-6

    Article  CAS  Google Scholar 

  84. Matson DW, Sharma SK, Philpotts JA (1983) Raman spectra and structure of sodium aluminogermanate glasses. J Non- Cryst Solids 58:323. https://doi.org/10.1016/0022-3093(84)90125-X

    Article  CAS  Google Scholar 

  85. Colomban P (2003) Polymerization degree and Raman identification of ancient glasses used for jewelry, ceramic enamels and mosaics. 323:180–187. https://doi.org/10.1016/S0022-3093(03)00303-X

  86. Colomban P (2009) The use of metal nanoparticles to produce yellow, red and iridescent colour, from Bronze Age to present times in Lustre pottery and glass: solid state chemistry, spectroscopy and nanostructure. J Nano Res 8:109-132. https://doi.org/10.4028/www.scientific.net/JNanoR.8.109

  87. Colomban P, Treppoz F (2020) Raman spectroscopic and SEM/EDXS analyses of high translucent Nantgarw porcelain. J European Ceramic Society 40(13):4664–4675. https://doi.org/10.1016/j.jeurceramsoc.2020.04.031

    Article  CAS  Google Scholar 

  88. Meulebroeck W, Wouters H, Nys K, Thienpont H (2016) Authenticity screening of stained glass windows using optical spectroscopy. Sci Rep 6:37726. https://doi.org/10.1038/srep37726(2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Smith E, Geoffery D (2005) Modern Raman spectroscopy: a practical approach. Wiley, England, 2005 Ewen Smith and Geoffrey Dent. Wiley, Chichester. Pp. 210. ISBN 0 471 49668 5. https://doi.org/10.1002/jrs.1320

  90. Rivas L, Sanchez-Cortes S, Garcia-Ramos JV, Morcillo G (2000) Mixed silver/gold colloids: a study of their formation, morphology, and surface-enhanced Raman activity. Langmuir 16:9722–9728. https://doi.org/10.1021/la000557s

    Article  CAS  Google Scholar 

  91. Fang J, Huang Y, Li X, Dou X (2004) Aggregation and surface-enhanced Raman activity study of dye-coated mixed silver–gold colloids. J Raman Spectrosc 35(11):914–920. https://doi.org/10.1002/jrs.1225

  92. Mandelbaum Y, Mottes R, Zalevsky Z, Zitoun D, Karsenty A (2020) Design of surface enhanced Raman scattering (SERS) nanosensor array. Sensors 20(18):5123. https://doi.org/10.3390/s20185123

    Article  CAS  PubMed Central  Google Scholar 

  93. Flynn NT, Gewirth AA (2002) Attenuation of surface-enhanced Raman spectroscopy response in gold-platinum core-shell nanoparticles. J Raman Spectrosc 33:243. https://doi.org/10.1002/jrs.841

    Article  CAS  Google Scholar 

  94. Satpathy G, Chandra GK, Manikandan E, Mahapatra DR, Umapathy S (2020) Pathogenic Escherichia coli (E. coli) detection through tuned nanoparticles enhancement study. Biotechnol Lett 42:853–863. https://doi.org/10.1007/s10529-020-02835-y

  95. Manikandan P, Manikandan D, Manikandan E, Ferdinand AC (2014) Structural, optical and micro-Raman scattering studies of nanosized copper ion (Cu+) exchanged soda lime glasses. Plasmonics 9(3):637–643. https://doi.org/10.1007/s11468-014-9675-6

  96. McQuillan AJ (2009) The discovery of surface-enhanced Raman scattering. Notes Rec R Soc 63:105–109. https://doi.org/10.1098/rsnr.2008.0032

    Article  Google Scholar 

  97. Kaganovskii Y, Paritskaya LN (2004) Encyclopaedia of nanoscience and nano technology, (vol 2, No 1)

  98. Kumar G, Soni RK (2020) Silver nanocube- and nanowire-based SERS substrates for ultra-low detection of PATP and thiram molecules. Plasmonics 15:1577–1589. https://doi.org/10.1007/s11468-020-01172-0

    Article  CAS  Google Scholar 

  99. Jie Z, Pengyue Z, Yimin D, Xiaolei Z, Jiamin Q, Yong Z (2016) Ag-Cu nanoparticles encaptured by graphene with magnetron sputtering and CVD for surface-enhanced Raman scattering. Plasmonics 11:1495–1504. https://doi.org/10.1007/s11468-016-0202-9

    Article  CAS  Google Scholar 

  100. Fuxi G (1992) Optical and spectroscopic properties of glass, (Springer-Verlag. New York. https://doi.org/10.1007/s11664-019-07674-w

    Article  Google Scholar 

  101. Annapuma K, Kumar A, Dwivedi RN, Hussain NS, Buddhudu S (2000) Mater Lett 45:23. https://doi.org/10.1007/s00339-004-2603-4

    Article  CAS  Google Scholar 

  102. Wang GL, Liang KM, Liu W, Hu AM, Xue SN, Wang G (2005) An experimental and theoretical investigation on the nucleation mechanism of copper-containing glass in an electric field. Appl Phys A 81:413–417. https://doi.org/10.1007/s00339-004-2603-4

    Article  CAS  Google Scholar 

  103. Fukumi K, Chayahara A, Ohora K, Kitamura N, Horino Y, Fujii K, Makihara M, Hayakaya J, Ohno N (1999) Photoluminescence of Cu+ doped silica glass prepared by MeV ion implantation. Nucl Instrum Meth B 149(1–2):77–80. https://doi.org/10.1016/S0168-583X(98)00729-0

    Article  CAS  Google Scholar 

  104. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2:107–118. https://doi.org/10.1007/s11468-007-9031-1

  105. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Part of the Springer Series in Materials Science book series (SSMATERIALS, Volume 25, Springer, New York. https://doi.org/10.1007/978-3-662-09109-8

  106. Villegas MA, García MA, Llopis J, Navarro JMF (1998) Optical spectroscopy of hybrid sol-gel coatings doped with noble metals. J Sol-Gel Sci Technol 11:251–265. https://doi.org/10.1023/A:1008654228678

    Article  CAS  Google Scholar 

  107. Wang PW (1997) Formation of silver colloids in silver ion-exchanged soda-lime glasses during annealing. Appl Surf Sci 120:291–298. https://doi.org/10.1016/S0169-4332(97)00237-7

    Article  CAS  Google Scholar 

  108. Yang XC (2016) Influences of ion exchange and thermal treatment on photoluminescence of noble metal doped silicate glasses. J Inorg Mater 31(10):1039–1045. https://doi.org/10.15541/jim20160214

  109. Manikandan D, Mohan S, Nair KGM (2003) Photolumibescence of embedded copper nanoclusters in soda-lime glass. Mater Lett 57:1391–1394. https://doi.org/10.1016/S0167-577X(02)00994-1

    Article  CAS  Google Scholar 

  110. Qiao Y, Chen D, Liu X, Ruan J, Qiu J, Aka T (2008) Blue green emission from a Cu-doped transparent material prepared by sintering porous glass. IEEE Photonic Technol Lett 20:1390–1392. https://doi.org/10.1109/lpt.2008.927904

    Article  CAS  Google Scholar 

  111. Manikandan D, Mohan S, Magudapathy P, Nair KGM (2003) Blue shift of plasmon resonance in Cu and Ag ion-exchanged and annealed soda-lime glass: an optical absorption study. Phys B 325:86–91. https://doi.org/10.1016/S0921-4526(02)01453-9

    Article  CAS  Google Scholar 

  112. Kumar P, Mathpal MC, Hamad S, Rao SV, Neethling JH, Vuuren AJ, Njorog EG, Kroon RE, Roos WD, Swart HC (2019) Cu nanoclusters in ion exchanged soda-lime glass: Study of SPR and nonlinear optical behavior for photonics. Appl Mater Today 15:323–334. https://doi.org/10.1016/j.apmt.2019.02.016

    Article  CAS  Google Scholar 

  113. Li W (2018) Physics models of plasmonics: single nanoparticle, complex single nanoparticle, nanodimer, and single nanoparticle over metallic thin film. Plasmonics 13:997–1014. https://doi.org/10.1007/s11468-017-0598-x

    Article  PubMed  Google Scholar 

  114. Pshenova AS, Sidorov AI, Antropova TV, Nashchekin AV (2019) Luminescence enhancement and SERS by self-assembled plasmonic silver nanostructures in nanoporous glasses. Plasmonics 14:125–131. https://doi.org/10.1007/s11468-018-0784-5

    Article  CAS  Google Scholar 

  115. Hilton PR, Oxtoby DW (1980) Surface enhanced Raman spectra: a critical review of the image dipole description. J Chem Phys 72:6346. https://doi.org/10.1063/1.439158

  116. Pyrak E, Krajczewski J, Kowalik A, Kudelski A, Jaworska A (2019) Surface enhanced Raman spectroscopy for DNA biosensors-how far are we? Molecules 24(24):4423. https://doi.org/10.3390/molecules24244423

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Mathew K Moodly, Professor, School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, South Africa, and Dr Bonex W Mwakikunga, Principal Scientist, NCNSM, CSIR, Pretoria, South Africa, for their help with the micro-Raman facilities and their extended scientific support. The author also thank the National Isotope Centre, GNS Science, New Zealand, and iThemba LABS, RSA facilities in carrying out IBA Techniques of RBS and PIXE analyses for the complementary purpose of these Raman analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manikandan Elayaperumal.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no competing interests.

Disclaimer

We have used our own in-house laboratory facilities and mutual research collaborative work at IISc, IISER, India

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 781 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaur, R., Manikandan, P., Manikandan, D. et al. Noble Metal Ion Embedded Nanocomposite Glass Materials for Optical Functionality of UV–Visible Surface Plasmon Resonance (SPR) Surface-Enhanced Raman Scattering (SERS) X-ray and Electron Microscopic Studies: An Overview. Plasmonics 16, 1461–1493 (2021). https://doi.org/10.1007/s11468-021-01413-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01413-w

Keywords

Navigation