Skip to main content

Advertisement

Log in

Synthetic Lethal Interactions Prediction Based on Multiple Similarity Measures Fusion

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

The synthetic lethality (SL) relationship arises when a combination of deficiencies in two genes leads to cell death, whereas a deficiency in either one of the two genes does not. The survival of the mutant tumor cells depends on the SL partners of the mutant gene, thereby the cancer cells could be selectively killed by inhibiting the SL partners of the oncogenic genes but normal cells could not. Therefore, there is an urgent need to develop more efficient computational methods of SL pairs identification for cancer targeted therapy. In this paper, we propose a new approach based on similarity fusion to predict SL pairs. Multiple types of gene similarity measures are integrated and k-nearest neighbors algorithm (k-NN) is applied to achieve the similarity-based classification task between gene pairs. As a similarity-based method, our method demonstrated excellent performance in multiple experiments. Besides the effectiveness of our method, the ease of use and expansibility can also make our method more widely used in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hartwell L H, Szankasi P, Roberts C J et al. Integrating genetic approaches into the discovery of anticancer drugs. Science, 1997, 278(5340): 1064-1068. https://doi.org/10.1126/science.278.5340.1064.

    Article  Google Scholar 

  2. Boone C, Bussey H, Andrews B J. Exploring genetic interactions and networks with yeast. Nature Reviews Genetics, 2007, 8(6): 437-449. https://doi.org/10.1038/nrg2085.

    Article  Google Scholar 

  3. Chan D A, Giaccia A J. Harnessing synthetic lethal interactions in anticancer drug discovery. Nature Reviews Drug Discovery, 2011, 10(5): 351-364. https://doi.org/10.1038/nrd3374.

    Article  Google Scholar 

  4. Deng X, Das S, Valdez K et al. SL-BioDP: Multi-cancer interactive tool for prediction of synthetic lethality and response to cancer treatment. Cancers (Basel), 2019, 11(11): Article No. 1682. https://doi.org/10.3390/cancers11111682.

  5. McLornan D P, List A, Mufti G J. Applying synthetic lethality for the selective targeting of cancer. New England Journal of Medicine, 2014, 371(18): 1725-1735. https://doi.org/10.1056/NEJMra1407390.

    Article  Google Scholar 

  6. Bryant H E, Schultz N, Thomas H D et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature, 2007, 434(7035): 913-917. https://doi.org/10.1038/nature03443.

    Article  Google Scholar 

  7. Downward J. Targeting RAS signalling pathways in cancer therapy. Nature Reviews Cancer, 2003, 3(1): 11-22. https://doi.org/10.1038/nrc969.

  8. Fong P C, Boss D S, Yap T A et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. New England Journal of Medicine, 2009, 361(2): 123-134. https://doi.org/10.1056/NEJMoa0900212.

    Article  Google Scholar 

  9. Jackson S P, Bartek J. The DNA-damage response in human biology and disease. Nature, 2009, 461(7267): 1071-1078. https://doi.org/10.1038/nature08467.

    Article  Google Scholar 

  10. Lee J S, Das A, Auslander N et al. Harnessing synthetic lethality to predict the response to cancer treatment. Nature Communications, 2018, 9(1): Article No. 2546. https://doi.org/10.1038/s41467-018-04647-1.

  11. Simons A, Dafni N, Dotan I. Establishment of a chemical synthetic lethality screen in cultured human cells. Genome Research, 2001, 11(2): 266-273. https://doi.org/10.1101/gr.154201.

    Article  Google Scholar 

  12. Barbie D A, Tamayo P, Boehm J S et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 2009, 462(7269): 108-112. https://doi.org/10.1038/nature08460.

    Article  Google Scholar 

  13. Steckel M, Molina-Arcas M, Weigelt B et al. Determination of synthetic lethal interactions in KRAS oncogene-dependent cancer cells reveals novel therapeutic targeting strategies. Cell Research, 2012, 22(8): 1227-1245. https://doi.org/10.1038/cr.2012.82.

    Article  Google Scholar 

  14. Han K, Jeng E E, Hess G T et al. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nature Biotechnology, 2017, 35(5): 463-474. https://doi.org/10.1038/nbt.3834.

    Article  Google Scholar 

  15. Du D, Roguev A, Gordon D E et al. Genetic interaction mapping in mammalian cells using CRISPR interference. Nature Methods, 2017, 14(6): 577-580. https://doi.org/10.1038/nmeth.4286.

    Article  Google Scholar 

  16. Bleicher K H, Böhm H J, Müller K et al. Hit and lead generation: Beyond high-throughput screening. Nature Reviews Drug Discovery, 2003, 2(5): 369-378. https://doi.org/10.1038/nrd1086.

  17. Bajorath J. Integration of virtual and high-throughput screening. Nature Reviews Drug Discovery, 2002, 1(11): 882-894. https://doi.org/10.1038/nrd941.

    Article  Google Scholar 

  18. Guo J, Liu H, Zheng J. SynLethDB: Synthetic lethality database toward discovery of selective and sensitive anticancer drug targets. Nucleic Acids Res., 2016, 44(D1): D1011-D1017. https://doi.org/10.1093/nar/gkv1108.

  19. Lu X, Kensche P R, Huynen M A et al. Genome evolution predicts genetic interactions in protein complexes and reveals cancer drug targets. Nature Communications, 2013, 4: Article No. 2124. https://doi.org/10.1038/ncomms3124.

  20. Srivas R, Shen J P, Yang C C et al. A network of conserved synthetic lethal interactions for exploration of precision cancer therapy. Molecular Cell, 2016, 63(3): 514-525. https://doi.org/10.1016/j.molcel.2016.06.022.

    Article  Google Scholar 

  21. Kim J W, Botvinnik O B, Abudayyeh O et al. Characterizing genomic alterations in cancer by complementary functional associations. Nature Biotechnology, 2016, 34(5): 539-546. https://doi.org/10.1038/nbt.3527.

    Article  Google Scholar 

  22. Cho H, Berger B, Peng J. Compact integration of multi-network topology for functional analysis of genes. Cell Systems, 2016, 3(6): 540-548. https://doi.org/10.1016/j.cels.2016.10.017.

    Article  Google Scholar 

  23. Jerby-Arnon L, Pfetzer N, Waldman Y et al. Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality. Cell, 2014, 158(5): 1199-1209. https://doi.org/10.1016/j.cell.2014.07.027.

    Article  Google Scholar 

  24. Wan F, Li S, Tian T et al. EXP2SL: A machine learning framework for cell-line-specific synthetic lethality prediction. Frontiers in Pharmacology, 2020, 11: Article No. 112. https://doi.org/10.3389/fphar.2020.00112.

  25. Liany H, Jeyasekharan A, Rajan V. Predicting synthetic lethal interactions using heterogeneous data sources. Bioinformatics, 2020, 36(7): 2209-2216. https://doi.org/10.1093/bioinformatics/btz893.

    Article  Google Scholar 

  26. Li P, Huang C, Fu Y et al. Large-scale exploration and analysis of drug combinations. Bioinformatics, 2015, 31(12): 2007-2016. https://doi.org/10.1093/bioinformatics/btv080.

    Article  Google Scholar 

  27. Menche J, Sharma A, Kitsak M et al. Uncovering disease-disease relationships through the incomplete interactome. Science, 2015, 347(6224): Article No. 1257601. https://doi.org/10.1126/science.1257601.

  28. Duan Q, Flynn C, Niepel M et al. LINCS Canvas Browser: Interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures. Nucleic Acids Research, 2014, 42(W1): W449-W460. https://doi.org/10.1093/nar/gku476.

  29. The UniProt Consortium. UniProt: A hub for protein information. Nucleic Acids Research, 2015, 43(D1): D204-D212. https://doi.org/10.1093/nar/gku989.

  30. Davis A P, Grondin C J, Johnson R J et al. The comparative toxicogenomics database: Update 2019. Nucleic Acids Research, 2019, 47(D1): D948-D954. https://doi.org/10.1093/nar/gky868.

    Article  Google Scholar 

  31. Subramanian A, Tamayo P, Mootha V K et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(43): 15545-15550. https://doi.org/10.1073/pnas.0506580102.

  32. Iorio F, Tagliaferri R, Di Bernardo D. Identifying network of drug mode of action by gene expression profiling. Journal of Computational Biology, 2009, 16(2): 241-251. https://doi.org/10.1089/cmb.2008.10TT.

    Article  Google Scholar 

  33. Smith T F, Waterman M S. Identification of common molecular subsequences. Journal of Molecular Biology, 1981, 147(1): 195-197. https://doi.org/10.1016/0022-2836(81)90087-5.

  34. Perlman L, Gottlieb A, Atias N et al. Combining drug and gene similarity measures for drug-target elucidation. Journal of Computational Biology, 2011, 18(2): 133-145. https://doi.org/10.1089/cmb.2010.0213.

    Article  Google Scholar 

  35. Yu G, Li F, Qin Y et al. GOSemSim: An R package for measuring semantic similarity among GO terms and gene products. Bioinformatics, 2010, 26(7): 976-978. https://doi.org/10.1093/bioinformatics/btq064.

    Article  Google Scholar 

  36. Wang J Z, Du Z, Payattakool R et al. A new method to measure the semantic similarity of GO terms. Bioinformatics, 2007, 23(10): 1274-1281. https://doi.org/10.1093/bioinformatics/btm087.

    Article  Google Scholar 

  37. Wang B, Mezlini A, Demir F et al. Similarity network fusion for aggregating data types on a genomic scale. Nature Methods, 2014, 11(3): 333-337. https://doi.org/10.1038/nmeth.2810.

    Article  Google Scholar 

  38. Altman N S. An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 1992, 46(3): 175-185. https://doi.org/10.1080/00031305.1992.10475879.

    Article  MathSciNet  Google Scholar 

  39. He S, He H, Xu W. ICM: A web server for integrated clustering of multi-dimensional biomedical data. Nucleic Acids Research, 2016, 44(W1): W154-W159. https://doi.org/10.1093/nar/gkw378.

  40. Hoadley K A, Yau C, Wolf D M et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell, 2014, 158(4): 929-944. https://doi.org/10.1016/j.cell.2014.06.049.

    Article  Google Scholar 

  41. Ma T, Zhang A. Affinity network fusion and semi-supervised learning for cancer patient clustering. Methods, 2018, 145: 16-24. https://doi.org/10.1016/j.ymeth.2018.05.020.

    Article  Google Scholar 

  42. Tipping M E, Bishop C M. Probabilistic principal component analysis. Journal of the Royal Statistical Society, Series B, 1999, 21(3): 611-622. https://doi.org/10.1111/1467-9868.00196.

    Article  MathSciNet  MATH  Google Scholar 

  43. Pedregosa F, Varoquaux G, Gramfort A et al. Scikit-learn: Machine learning in Python. Journal of Machine learning Research, 2011, 12: 2825-2830.

    MathSciNet  MATH  Google Scholar 

  44. Moore A R, Rosenberg S C, McCormick F et al. RAS-targeted therapies: Is the undruggable drugged? Nature Reviews Drug Discovery, 2020, 19(8): 533-552. https://doi.org/10.1038/s41573-020-0068-6.

    Article  Google Scholar 

  45. Wishart D S, Feunang Y D, Guo A C et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research, 2018, 46(D1): D1074-D1082. https://doi.org/10.1093/nar/gkx1037.

  46. Costa-Cabral S, Brough R, Konde A et al. CDK1 is a synthetic lethal target for KRAS mutant tumours. PLoS ONE, 2016, 11(2): Article No. e0149099. https://doi.org/10.1371/journal.pone.0149099.

  47. Grem J L, Voeller D M, Geoffroy F et al. Determinants of trimetrexate lethality in human colon cancer cells. British Journal of Cancer, 1994, 70(6): 1075-1084. https://doi.org/10.1038/bjc.1994.451.

    Article  Google Scholar 

  48. Raimondi M V, Randazzo O, La Franca M et al. DHFR inhibitors: Reading the past for discovering novel anti-cancer agents. Molecules, 2019, 24(6): Article No. 1140. https://doi.org/10.3390/molecules24061140.

  49. Gesto D S, Cerqueira N M, Fernandes P A et al. Gemcitabine: A critical nucleoside for cancer therapy. Current Medicinal Chemistry, 2012, 19(7): 1076-1087. https://doi.org/10.2174/092986712799320682.

    Article  Google Scholar 

  50. Shimasaki T, Ishigaki Y, Nakamura Y et al. Glycogen synthase kinase 3β inhibition sensitizes pancreatic cancer cells to gemcitabine. Journal of Gastroenterology, 2012, 47(3): 321-333. https://doi.org/10.1007/s00535-011-0484-9.

    Article  Google Scholar 

  51. Kunnumakkara A B, Sung B, Ravindran J et al. Zyflamend suppresses growth and sensitizes human pancreatic tumors to gemcitabine in an orthotopic mouse model through modulation of multiple targets. International Journal of Cancer, 2012, 131(3): E292-E303. https://doi.org/10.1002/ijc.26442.

    Article  Google Scholar 

  52. Xia G, Wang H, Song Z et al. Gambogic acid sensitizes gemcitabine efficacy in pancreatic cancer by reducing the expression of ribonucleotide reductase subunit-M2 (RRM2). Journal of Experimental & Clinical Cancer Research, 2017, 36(1): Article No. 107. https://doi.org/10.1186/s13046-017-0579-0.

  53. Yoshida K, Toden S, Ravindranathan P et al. Curcumin sensitizes pancreatic cancer cells to gemcitabine by attenuating PRC2 subunit EZH2, and the lncRNA PVT1 expression. Carcinogenesis, 2017, 38(10): 1036-1046. https://doi.org/10.1093/carcin/bgx065.

    Article  Google Scholar 

  54. Ashworth A, Lord C J, Reis-Filho J S. Genetic interactions in cancer progression and treatment. Cell., 2011, 145(1): 30-38. https://doi.org/10.1016/j.cell.2011.03.020.

    Article  Google Scholar 

  55. Brough R, Frankum J R, Costa-Cabral S et al. Searching for synthetic lethality in cancer. Current Opinion in Genetics and Development, 2011, 21(1): 34-41. https://doi.org/10.1016/j.gde.2010.10.009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Song He or Xiao-Chen Bo.

Supplementary Information

ESM 1

(PDF 127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, LL., Wen, YQ., Yang, XX. et al. Synthetic Lethal Interactions Prediction Based on Multiple Similarity Measures Fusion. J. Comput. Sci. Technol. 36, 261–275 (2021). https://doi.org/10.1007/s11390-021-0866-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-021-0866-2

Keywords

Navigation