Skip to main content
Log in

An Efficient WRF Framework for Discovering Risk Genes and Abnormal Brain Regions in Parkinson’s Disease Based on Imaging Genetics Data

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

As an emerging research field of brain science, multimodal data fusion analysis has attracted broader attention in the study of complex brain diseases such as Parkinson’s disease (PD). However, current studies primarily lie with detecting the association among different modal data and reducing data attributes. The data mining method after fusion and the overall analysis framework are neglected. In this study, we propose a weighted random forest (WRF) model as the feature screening classifier. The interactions between genes and brain regions are detected as input multimodal fusion features by the correlation analysis method. We implement sample classification and optimal feature selection based on WRF, and construct a multimodal analysis framework for exploring the pathogenic factors of PD. The experimental results in Parkinson’s Progression Markers Initiative (PPMI) database show that WRF performs better compared with some advanced methods, and the brain regions and genes related to PD are detected. The fusion of multi-modal data can improve the classification of PD patients and detect the pathogenic factors more comprehensively, which provides a novel perspective for the diagnosis and research of PD. We also show the great potential of WRF to perform the multimodal data fusion analysis of other brain diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arkinson C, Walden H. Parkin function in Parkinson’s disease. Science, 2018, 360(6386): 267-268. https://doi.org/10.1126/science.aar6606.

    Article  Google Scholar 

  2. Lv D J, Li L X, Chen J, Wei S Z, Wang F, Hu H, Xie A M, Liu C F. Sleep deprivation caused a memory defects and emotional changes in a rotenone-based zebrafish model of Parkinson’s disease. Behavioural Brain Research, 2019, 372: Article No. 112031. https://doi.org/10.1016/j.bbr.2019.112031.

  3. Koros C, Simitsi A, Stefanis L. Genetics of Parkinson’s disease: Genotype-phenotype correlations. International Review of Neurobiology, 2017, 132: 197-231. https://doi.org/10.1016/bs.irn.2017.01.009.

    Article  Google Scholar 

  4. Kim M, Kim J, Lee S H, Park H. Imaging genetics approach to Parkinson’s disease and its correlation with clinical score. Scientific Reports, 2017, 7: Article No. 46700. https://doi.org/10.1038/srep46700.

  5. Won J H, Kim M, Park B Y, Youn J, Park H. Effectiveness of imaging genetics analysis to explain degree of depression in Parkinson’s disease. PLoS ONE, 2019, 14(2): Article No. e0211699. https://doi.org/10.1371/journal.pone.0211699.

  6. Wang X, Yan J, Yao X et al. Longitudinal genotype-phenotype association study through temporal structure auto-learning predictive model. Journal of Computational Biology, 2018, 25(7): 809-824. https://doi.org/10.1089/cmb.2018.0008.

    Article  MathSciNet  Google Scholar 

  7. Hao X, Li C, Yan J, Yao X, Risacher S L, Saykin A J, Shen L, Zhang D, Alzheimer’s Disease Neuroimaging Initiative. Identification of associations between genotypes and longitudinal phenotypes via temporally-constrained group sparse canonical correlation analysis. Bioinformatics, 2017, 33(14): i341-i349. https://doi.org/10.1093/bioinformatics/btx245.

    Article  Google Scholar 

  8. Min W, Liu J, Zhang S. Edge-group sparse PCA for network-guided high dimensional data analysis. Bioinformatics, 2018, 34(20): 3479-3487. https://doi.org/10.1093/bioinformatics/bty362.

    Article  Google Scholar 

  9. Hua K, Zhang X. Estimating the total genome length of a metagenomic sample using k-mers. BMC Genomics, 2019, 20(2): Article No. 183. https://doi.org/10.1186/s12864-019-5467-x.

  10. Calhoun V D, Liu J, AdalıT. A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. NeuroImage, 2009, 45(1, Supplement 1): S163-S172. https://doi.org/10.1016/j.neuroimage.2008.10.057.

  11. Hamza T H, Zabetian C P, Tenesa A et al. Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nature Genetics, 2010, 42(9): 781-785. https://doi.org/10.1038/ng.642.

    Article  Google Scholar 

  12. Peng J, Guan J, Shang X. Predicting Parkinson’s disease genes based on Node2vec and autoencoder. Frontiers in Genetics, 2019, 10: Article No. 226. https://doi.org/10.3389/fgene.2019.00226.

  13. Mohammed A, Zamani M, Bayford R, Demosthenous A. Toward on-demand deep brain stimulation using online Parkinson’s disease prediction driven by dynamic detection. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(12): 2441-2452. https://doi.org/10.1109/TNSRE.2017.2722986.

    Article  Google Scholar 

  14. Rana B, Juneja A, Saxena M, Gudwani S, Kumaran S S, Behari M, Agrawal R K. Relevant 3D local binary pattern based features from fused feature descriptor for differential diagnosis of Parkinson’s disease using structural MRI. Biomedical Signal Processing and Control, 2017, 34: 134-143. https://doi.org/10.1016/j.bspc.2017.01.007.

    Article  Google Scholar 

  15. Gupta D, Julka A, Jain S, Aggarwal T, Khanna A, Arunkumar N, De Albuquerque V H C. Optimized cuttlefish algorithm for diagnosis of Parkinson’s disease. Cognitive Systems Research, 2018, 52: 36-48. https://doi.org/10.1016/j.cogsys.2018.06.006.

    Article  Google Scholar 

  16. Zeng W, Liu F, Wang Q, Wang Y, Ma L, Zhang Y. Parkinson’s disease classification using gait analysis via deterministic learning. Neuroscience Letters, 2016, 633: 268-278. https://doi.org/10.1016/j.neulet.2016.09.043.

    Article  Google Scholar 

  17. Huang Y A, Huang Z A, You Z H, Hu P, Li L P, Li Z W, Wang L. Precise prediction of pathogenic microorganisms using 16S rRNA gene sequences. In Proc. the 15th International Conference on Intelligent Computing, August 2019, pp.138-150. https://doi.org/10.1007/978-3-030-26969-2_13.

  18. Du L, Liu K, Zhang T, Yao X, Yan J, Risacher S L, Han J, Guo L, Saykin A J, Shen L, Alzheimer’s Disease Neuroimaging Initiative. A novel SCCA approach via truncated 1-norm and truncated group lasso for brain imaging genetics. Bioinformatics, 2017, 34(2): 278-285. https://doi.org/10.1093/bioinformatics/btx594.

    Article  Google Scholar 

  19. Du L, Liu K, Zhu L, Yao X, Risacher S L, Guo L, Saykin A J, Shen L, Alzheimer’s Disease Neuroimaging Initiative. Identifying progressive imaging genetic patterns via multitask sparse canonical correlation analysis: A longitudinal study of the ADNI cohort. Bioinformatics, 2019, 35(14): i474-i483. https://doi.org/10.1093/bioinformatics/btz320.

    Article  Google Scholar 

  20. Du L, Liu K, Yao X, Risacher S L, Shen L. Detecting genetic associations with brain imaging phenotypes in Alzheimer’s disease via a novel structured SCCA approach. Medical Image Analysis, 2020, 61: Article No. 101656. https://doi.org/10.1016/j.media.2020.101656.

  21. Wei L, Su R, Luan S, Liao Z, Manavalan B, Zou Q, Shi X. Iterative feature representations improve N4-methylcytosine site prediction. Bioinformatics, 2019, 35(23): 4930-4937. https://doi.org/10.1093/bioinformatics/btz408.

    Article  Google Scholar 

  22. Chen F X, Kang D Z, Chen F Y, Liu Y, Wu G, Li X, Yu L H, Lin Y X, Lin Z Y. Gray matter atrophy associated with mild cognitive impairment in Parkinson’s disease. Neuroscience Letters, 2016, 617: 160-165. https://doi.org/10.1016/j.neulet.2015.12.055.

    Article  Google Scholar 

  23. Guimarães R P, Arci Santos M C, Dagher A et al. Pattern of reduced functional connectivity and structural abnormalities in Parkinson’s disease: An exploratory study. Frontiers in Neurology, 2017, 7: 243. https://doi.org/10.3389/fneur.2016.00243.

  24. Hou Y, Wei Q, Ou R, Yang J, Song W, Gong Q, Shang H. Impaired topographic organization in cognitively unimpaired drug-naïve patients with rigidity-dominant Parkinson’ disease. Parkinsonism & Related Disorders, 2018, 56: 52-57. https://doi.org/10.1016/j.parkreldis.2018.06.021.

  25. Zhao L, Wang E, Zhang X et al. Cortical structural connectivity alterations in primary insomnia: Insights from MRI-based morphometric correlation analysis. BioMed Research International, 2015, 2015: Article No. 817595. https://doi.org/10.1155/2015/817595.

  26. Meunier D, Stamatakis E A, Tyler L K. Age-related functional reorganization, structural changes, and preserved cognition. Neurobiology of Aging, 2014, 35(1): 42-54. https://doi.org/10.1016/j.neurobiolaging.2013.07.003.

    Article  Google Scholar 

  27. Li H F, Yang L, Yin D, Chen W J, Liu G L, Ni W, Wang N, Yu W, Wu Z Y, Wang Z. Associations between neuroanatomical abnormality and motor symptoms in paroxysmal kinesigenic dyskinesia. Parkinsonism & Related Disorders, 2019, 62: 134-140. https://doi.org/10.1016/j.parkreldis.2018.12.029.

  28. Reijnders J S A M, Scholtissen B, Weber W E J, Aalten P, Verhey F R J, Leentjens A F G. Neuroanatomical correlates of apathy in Parkinson’s disease: A magnetic resonance imaging study using voxel-based morphometry. Movement Disorders, 2010, 25(14): 2318-2325. https://doi.org/10.1002/mds.23268.

    Article  Google Scholar 

  29. Melzer T R, Watts R, MacAskill M R, Pitcher T L, Livingston L, Keenan R J, Dalrymple-Alford J C, Anderson T J. Grey matter atrophy in cognitively impaired Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 2012, 83(2): 188-194. https://doi.org/10.1136/jnnp-2011-300828.

    Article  Google Scholar 

  30. De Schipper L J, Hafkemeijer A, van der Grond J, Marinus J, Henselmans J M L, van Hilten J J. Altered whole-brain and network-based functional connectivity in Parkinson’s disease. Frontiers in Neurology, 2018, 9: Article No. 419. https://doi.org/10.3389/fneur.2018.00419.

  31. Evangelisti S, Pittau F, Testa C et al. L-dopa modulation of brain connectivity in Parkinson’s disease patients: A pilot EEG-fMRI study. Frontiers in Neuroscience, 2019, 13: Article No. 611. https://doi.org/10.3389/fnins.2019.00611.

  32. Wang Q, Li W X, Dai S X, Guo Y C, Han F F, Zheng J J, Li G H, Huang J F. Meta-analysis of Parkinson’s disease and Alzheimer’s disease revealed commonly impaired pathways and dysregulation of NRF2-dependent genes. Journal of Alzheimers Disease, 2017, 56(4): 1525-1539. https://doi.org/10.3233/JAD-161032.

  33. International Parkinson Disease Genomics Consortium. Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: A meta-analysis of genome-wide association studies. The Lancet, 2011, 377(9766): 641-649. https://doi.org/10.1016/S0140-6736(10)62345-8.

    Article  Google Scholar 

  34. Ahmed I, Tamouza R, Delord M et al. Association between Parkinson’s disease and the HLA-DRB1 locus. Movement Disorders, 2012, 27(9): 1104-1110. https://doi.org/10.1002/mds.25035.

    Article  Google Scholar 

  35. Bao W, Jiang Z, Huang D S. Novel human microbe-disease association prediction using network consistency projection. BMC Bioinformatics, 2017, 18(16): Article No. 543. https://doi.org/10.1186/s12859-017-1968-2.

  36. Sivaranjini S, Sujatha C M. Deep learning based diagnosis of Parkinson’s disease using convolutional neural network. Multimedia Tools and Applications, 2019, 79(3): 15467–15479. https://doi.org/10.1007/s11042-019-7469-8.

    Article  Google Scholar 

  37. Martinez-Murcia F J, Ortiz A, Gorriz J M, Ramirez J, Castillo-Barnes D, Salas-Gonzalez D, Segovia F. Deep convolutional autoencoders vs PCA in a highly-unbalanced Parkinson’s disease dataset: A DaTSCAN study. In Proc. the 13th International Conference on Soft Computing Models in Industrial and Environmental Applications, June 2018, pp. 47-56. https://doi.org/10.1007/978-3-319-94120-2_5.

  38. Gao C, Sun H, Wang T et al. Model-based and model-free machine learning techniques for diagnostic prediction and classification of clinical outcomes in Parkinson’s disease. Scientific Reports, 2018, 8(1): Article No. 7129. https://doi.org/10.1038/s41598-018-24783-4.

  39. Abós A, Baggio H C, Segura B, García-Díaz A I, Compta Y, Martí M J, Valldeoriola F, Junqué C. Discriminating cognitive status in Parkinson’s disease through functional connectomics and machine learning. Scientific Reports, 2017, 7: Article No. 45347. https://doi.org/10.1038/srep45347.

  40. Niu Y W, Wang G H, Yan G Y, Chen X. Integrating random walk and binary regression to identify novel miRNA-disease association. BMC Bioinformatics, 2019, 20(1): Article No. 59. https://doi.org/10.1186/s12859-019-2640-9.

  41. Zhao Y, Chen X, Yin J. Adaptive boosting-based computational model for predicting potential miRNA-disease associations. Bioinformatics, 2019, 35(22): 4730-4738. https://doi.org/10.1093/bioinformatics/btz297.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia-An Bi.

Supplementary Information

ESM 1

(PDF 125 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, XA., Xing, ZX., Xu, RH. et al. An Efficient WRF Framework for Discovering Risk Genes and Abnormal Brain Regions in Parkinson’s Disease Based on Imaging Genetics Data. J. Comput. Sci. Technol. 36, 361–374 (2021). https://doi.org/10.1007/s11390-021-0801-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-021-0801-6

Keywords

Navigation