Skip to main content
Log in

Late Ediacaran Hyperactivity Period: Quantifying the Reversal Frequency

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—The previous paleomagnetic studies of the Upper Vendian Zigan Formation sediments on the western slope of Southern Ural revealed uncommonly numerous magnetic polarity zones (Bazhenov et al., 2016). The dating of magmatic zircons from the tuff interlayer constrained the age of this formation to 547.6 ± 3.8 Ma. The rate of reversals estimated from most general considerations is about 20–30 per Myr which is approximately two to three times higher than the highest reversal frequency in Phanerozoic. In this work, a more accurate estimate of the rate of reversals is obtained from cyclostratigraphic study of the lower red-rock part (74 m) of the Zigan Formation in its continuous section along the Sterlitamak–Magnitogorsk road—the longest one among those previously studied by the paleomagnetic method. The correlation of the detailed cyclostratigraphic studies with the magnetostratigraphic column allowed a more reliable estimation of the reversal rate. The studied section in which we identified 20 reversals was accumulated during 1.6 Myr, i.e., the reversal frequency in this interval was 12–13 per Myr. Our quantitative assessment shows that the previous studies overestimated the geomagnetic reversal frequency by a factor of two. However, even the reversal rate estimated in this study can be regarded anomalously high, and the previous conclusions about the existence of a period with anomalously frequent reversals in terminal Ediacaran 547.6 ± 3.8 Myr ago can be considered validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bazhenov, M.L., Levashova, N.M., Meert, J.G., Golovanova, I.V., Danukalov, K.N., and Fedorova, N.M., Late Ediacaran magnetostratigraphy of Baltica: evidence for magnetic field hyperactivity?, Earth Planet. Sci. Lett., 2016, vol. 435, pp. 124–135.

    Article  Google Scholar 

  2. Bebout, B.M. and Garcia-Pichel, F., UV B-induced vertical migrations of cyanobacteria in a microbial mat, Appl. Environ. Microbiol., 1995, vol. 6, no. 12, pp. 4215–4222.

    Article  Google Scholar 

  3. Bekker, Yu.R., Molassy dokembriya (Precambrian Molasses), Leningrad: Nedra, 1988.

  4. Berger, A. and Loutre, M.-F., Astronomical forcing through geological time, in Orbital Forcing and Cyclic Sequences, DeBoer, P., Smith, D.G., Eds., International Association of Sedimentologists Series, Special Publication, vol. 19, Oxford: Blackwell, 1994, pp. 15–24.

  5. Biggin, A.J., Steinberger, B., Aubert, J., Suttie, N., Holme, R., Torsvik, T.H., van der Meer, D.G., and van Hinsbergen, D.J.J., Possible links between long-term geomagnetic variations and whole-mantle convection processes, Nat. Geosci., 2012, vol. 5, no. 8, pp. 526–533.

    Article  Google Scholar 

  6. Clement, B.M., Dependence of the duration of geomagnetic polarity reversals on site latitude, Nature, 2004, vol. 428, pp. 637–640.

    Article  Google Scholar 

  7. Doglioni, C., Pignatti, J., and Coleman, M., Why did life develop on the surface of the Earth in the Cambrian?, Geosci. Front., 2016, vol. 7, no. 6, pp. 865–873.

    Article  Google Scholar 

  8. Duan, Z., Qingsong, L., Shoumai, R., Lihui, L., Xiaolong, D., and Jianxing, L., Magnetic reversal frequency in the Lower Cambrian Niutitang Formation, Hunan Province, South China, Geophys. J. Int., 2018, vol. 214, no. 2, pp. 1301–1312.

    Article  Google Scholar 

  9. Gallet, Y., Pavlov, V., and Korovnikov, I., Extreme geomagnetic reversal frequency during the Middle Cambrian as revealed by the magnetostratigraphy of the Khorbusuonka section (northeastern Siberia), Earth Planet. Sci. Lett., 2019, vol. 528, Paper ID 115823.

  10. Geologicheskaya karta Rossiiskoi Federatsii i sopredel’noi territorii respubliki Kazakhstan. Masshtab 1 : 1000000 (novaya seriya): List №-40(41) (Scale 1 : 1000000 Geological Map of the Russian Federation and Adjacent Territory of the Republic of Kazakhstan. (New Series): Sheet No.-40 (41)), Kozlov, V.I., Ed., St. Petersburg: VSEGEI, 2002.

    Google Scholar 

  11. Geyer, G. and Landing, E., The Precambrian–Phanerozoic and Ediacaran–Cambrian boundaries: a historical approach to a dilemma, Geol. Soc., London, Spec. Publ., 2017, vol. 448, no. 1, pp. 311–349.

    Article  Google Scholar 

  12. Gradstein, F., Ogg, J., Schmitz, M., and Ogg, G., The Geologic Timescale 2012, Amsterdam: Elsevier, 2012.

    Google Scholar 

  13. Grazhdankin D.V., Marusin V.V., Meert J., Krupenin M.T., and Maslov A.V., Kotlin regional stage in the South Urals, Dokl. Earth Sci., 2011, vol. 440, no. 1, pp. 1222–1226.

    Article  Google Scholar 

  14. Häder, D.-P., Kumar, H.D., Smith, R.C., and Worrest, R.C., Effects of solar UV radiation on aquatic ecosystems and interactions with climate change, Photochem. Photobiol. Sci., 2007, vol. 6, no. 3, pp. 267–285.

    Article  Google Scholar 

  15. Halls, H.C., Lovette, A., Hamilton, M.A., and Söderlund, U., A paleomagnetic and U-Pb geochronology study of the western end of the Grenville dyke swarm: rapid changes in paleomagnetic field direction at ca. 585 Ma related to polarity reversals?, Precambrian Res., 2015, vol. 257, pp. 137–166.

    Article  Google Scholar 

  16. Iglesia Llanos, M.P., Tait, J.A., Popov, V., and Abalmassova, A., Palaeomagnetic data from Ediacaran (Vendian) sediments of the Arkhangelsk region, NW Russia: An alternative apparent polar wander path of Baltica for the Late Proterozoic-Early Palaeozoic, Earth Planet. Sci. Lett., 2005, vol. 240, pp. 732–747.

    Article  Google Scholar 

  17. Kodama, K.P. and Hinnov, L.A., Rock Magnetic Cyclostratigraphy, Chichester: Wiley-Blackwell, 2015.

    Google Scholar 

  18. Landing, E., Antcliffe, J.B., Geyer, G., Kouchinsky, A., Bowser, S.S., and Andreas, A., Early evolution of colonial animals (Ediacaran Evolutionary Radiation–Cambrian Evolutionary Radiation–Great Ordovician Biodiversification Interval), Earth-Sci. Rev., 2018, vol. 178, pp. 105–135.

    Article  Google Scholar 

  19. Levashova, N.M., Bazhenov, M.L., Meert, J.G., Kuznetsov, N.B., Golovanova, I.V., Danukalov, K.N., and Fedorova, N.M., Paleogeography of Baltica in the Ediacaran: paleomagnetic and geochronological data from the clastic Zigan Formation, South Urals, Precambrian Res., 2013, vol. 236, pp. 16–30.

    Article  Google Scholar 

  20. Li, M., Hinnov, L., and Kump, L., Acycle: Time-series analysis software for paleoclimate research and education, Comput. Geosci., 2019, vol. 127, pp. 12–22.

    Article  Google Scholar 

  21. Liu, A.G., Matthews, J.J., Mcilroy, D., Narbonne, G.M., Landing, E., Menon, L.R., and Laflamme, M., International Symposium on the Ediacaran-Cambrian Transition (ISECT) 2017, 15–29 th June, 2017, Newfoundland, Canada, Episodes, 2018, vol. 41, no. 2, pp. 129–133.

    Article  Google Scholar 

  22. Mann, M.E. and Lees, J.M., Robust estimation of background noise and signal detection in climatic time series, Clim. Change, 1996, vol. 33, no. 3, pp. 409–445.

    Article  Google Scholar 

  23. Meert, J.G., Levashova, N.M., Bazhenov, M.L., and Landing, Ed., Rapid changes of magnetic Field polarity in the late Ediacaran: Linking the Cambrian evolutionary radiation and increased UV-B radiation, Gondwana Res., 2016, vol. 34, pp. 149–157.

    Article  Google Scholar 

  24. Merrill, R.T., McElhinny, M.W., and McFadden, P.L., The Magnetic Field of the Earth. San Diego: Acad. Press, 1996.

    Google Scholar 

  25. Pavlov, V.E., Shatsillo, A.V., Vodovozov, V.Yu., and Gallet, Y., Paleomagnetism of the Lower Cambrian from the lower Lena river valley: constraints on the apparent polar wander path from the Siberian platform and the anomalous behavior of the geomagnetic field at the beginning of the Phanerozoic, Izv. Phys. Solid Earth, 2004, vol. 40, no. 2, pp. 114–133.

    Google Scholar 

  26. Phoenix, V.R., Konhauser, K.O., Adams, D.G., and Bottrell, S.H., Role of biomineralization as an ultraviolet shield: Implications for Archean life, Geology, 2001, vol. 29, no. 9, pp. 823–826.

    Article  Google Scholar 

  27. Popov, V., Iosifidi, A., Khramov, A., Tait, J., and Bachtadse, V., Paleomagnetism of Upper Vendian sediments from the Winter Coast, White Sea region, Russia: Implications for the paleogeography of Baltica during Neoproterozoic times, J. Geophys. Res.: Solid Earth, 2002, vol. 107, no. 11, pp. EPM 10-1–EPM 10-8.

  28. Popov, V.V., Khramov, A.N., and Bachtadse, V., Palaeomagnetism, magnetic stratigraphy, and petromagnetism of the Upper Vendian sedimentary rocks in the sections of the Zolotitsa River and in the Verkhotina Hole, Winter Coast of the White Sea, Russia, Russ. J. Earth Sci., 2005, vol. 7, no. 2, pp. 115–143.

    Article  Google Scholar 

  29. Puchkov, V.N., Sergeeva, N.D., and Karaseva, T.V., Consolidated lithological and stratigraphic section and assessment of the prospects for oil and gas potential of the Upper Precambrian sediments of the Volga-Ural region, Mater. i dokl. 11 Mezhreg. nauchno-prakt. konf., posvyashch. 65-let. Inst. geol. UNTS RAN: Geologiya, poleznye iskopaemye i problemy geoekologii Bashkortostana, Urala i sopredel’nykh territorii (Proc. and Presentations 11th Interreg. Sci. Appl. Res. Conf. on 65th Ann. Inst. Geol., Ufa Sci. Center RAS: Geology, Minerals and Problems of Geoecology of Bashkortostan, the Urals and Adjacent Territories), Puchkov, V.N., Ed., Ufa, 2016, Ufa: DizainPress, 2016, pp. 64–73.

  30. Razumovskii, A.A., Novikov, I.A., Rud’ko, S.V., Kuznetsov, N.B., and Yashunskii, Yu.V., U-Pb isotope age of ash tuffs of the Late Vendian Basin Formation (Ashinskaya Group, South Urals), Mater. LI Tekton. soveshch.: Fundamental’nye problemy tektoniki i geodinamiki, tom 2 (Proc. LI Tecton. Conf.: Fundamental Problems of Tectonics and Geodynamics, vol. 2), Moscow, 2019, Moscow: GEOS, 2019, pp. 219–224.

  31. Shea, M.A. and Smart, D.F., Preliminary study of cosmic rays, geomagnetic field changes and possible climate changes, Adv. Space Res., 2004, vol. 34, no. 2, pp. 420–425.

    Article  Google Scholar 

  32. Sigg, J.E., Lloyd-Knight, K.M., and Boal, J.G., UV radiation influences covering behaviour in the urchin Lytechinus variegatus, J. Mar. Biol. Assoc. U. K., 2007, vol. 87, pp. 1257–1261.

    Article  Google Scholar 

  33. Tauxe, L., Gee, J.S., Steiner, M.B. and Staudigel, H., Paleointensity results from the Jurassic: New constraints fromsubmarine basaltic glasses of ODP Site 801C, Geochem. Geophys. Geosyst., 2013, vol. 14, no. 10, pp. 4718–4733.

    Article  Google Scholar 

  34. Thomson, D.J., Spectrum estimation and harmonic analysis, Proc. IEEE, 1982, vol. 70, no. 9, pp. 1055–1096.

    Article  Google Scholar 

  35. Valet, J.P., Meynadier, L., and Guyodo, Y., Geomagnetic dipole strength and reversal rate over the past two million years, Nature, 2005, vol. 435, pp. 802–805.

    Article  Google Scholar 

  36. Vogt, J., Zieger, B., Glassmeier, K.H., Stadelmann, A., Kallenrode, M.B., Sinnhuber, M., and Winkler, H., Energetic particles in the paleomagnetosphere: Reduced dipole configurations and quadrupolar contributions, J. Geophys. Res.: Space Phys., 2007, vol. 112, Paper ID 6216.

  37. Waltham, D., Milankovitch period uncertainties and their impact on cyclostratigraphy, J. Sediment. Res., 2015, vol. 85, no. 8, pp. 990–998.

    Article  Google Scholar 

  38. Wei, Y., Pu, Z., Zong, Q., Wan, W., Ren, Z., Fraenz, M., and Hong, M., Oxygen escape from the Earth during geomagnetic reversals: Implications to mass extinction, Earth Planet. Sci. Lett., 2014, vol. 394, pp. 94–98.

    Article  Google Scholar 

  39. Winkler, H., Sinnhuber, M., Notholt, J., Kallenrode, M.-B., Steinhilber, F., Vogt, J., Zieger, B., Glassmeier, K.-H., and Stadelmann, A., Modeling impacts of geomagnetic field variations on middle atmospheric ozone responses to solar protonevents on long timescales, J. Geophys. Res: Atmos., 2008, vol. 113, Paper ID D02302.

Download references

ACKNOWLEDGMENTS

We are grateful to V.E. Pavlov and V.P. Shcherbakov for their valuable comments.

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 18-05-00631 and no. 20-05-00410); the material in the geology of western South Urals was collected and colligated in partial fulfillment of state contract no. 0246-2019-0087.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. M. Levashova or I. V. Golovanova.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levashova, N.M., Golovanova, I.V., Rud’ko, D.V. et al. Late Ediacaran Hyperactivity Period: Quantifying the Reversal Frequency. Izv., Phys. Solid Earth 57, 247–256 (2021). https://doi.org/10.1134/S1069351321020026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351321020026

Keywords:

Navigation