Skip to main content
Log in

Nb–Zr–Y Systematics and Thermal Regimes of Subcontinental Lithospheric Mantle in the Archaean: Data from Mantle Xenoliths

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—The analysis of Nb–Zr–Y systematics and thermal regimes of lithospheric mantle of the Siberian, Kaapvaal, North American, North China, and South China cratons indicates their belonging to two types, one comprising the first three cratons (Siberian, Kaapvaal, and North American) (SKNA) and the other including the last two cratons (NCSC). Peridotites in the mantle of SKNA cratons have a Paleoarchaean age and are characterized by Nb content up to 5–6 ppm which is higher than in the primitive mantle (PM). The Zr and Y content in these peridotites is lower than in PM and, in a significant part of the samples, lower than in CI chondrite; these peridotites have superchondrite Nb/Y ratios (>1.0) and chondrite to superchondrite Zr/Y ratios. Thermal regimes in the mantle of SKNA cratons correspond to the model geotherm with surface heat flux density of 45 mW/m2 and fall in the diamond stability region; they are characterized by low (24.4 to 25.1°C/kb) quasi-thermal gradients (TG) reflecting the change in temperature with pressure increasing by 1 kb. The mantle peridotites of the North China Craton have a predominantly lower Nb content than in PM whereas the Nb content in the South China craton peridotites is somewhat higher than in PM. The Nb/Y ratios (ranging from subchondritic to superchondritic but remaining below 1.0) and the Zr/Y ratios (mainly subchondritic) correspond to those in peridotites of the ophiolite complexes of the South Urals and Northern Tibet. The thermal regimes in the mantle of the North China and South China cratons are characterized by the geotherms close to the model ones with heat flux densities of 55 and 60 mW/m2, respectively, and high average TG ​​(36.7 ± 0.5 and 41.3 ± 1.3°C/kb); these regimes correspond to the graphite stability region. The depth of the petrological boundary between the lithosphere and asthenosphere (lithosphere–asthenoasphere boundary, LAB) in the mantle of the SKNA cratons was ~200 km in the Paleoarchaean and, with the allowance for the geophysical data, has remained at the same level up to present. In the mantle of the North China and South China cratons as well as in the Baikal rift (Central Asian folded belt) and epi-Grenville Svalbard platform, since the end of the Paleoarchaean this boundary has been regularly rising to at least 70–80 km in Late Proterozoic. The difference of the mantle underlying the SKNA and NCSC cratons in terms of Nb–Zr–Y systematics and thermal regimes indicates the existence of different domains in the lithosphere since the end of the Paleoarchaean. The mantle of the first type of cratons is probably the relics of chondrite material that has not been completely reworked by melting and fractionation of the Fe-group elements and Nb with close properties. The mantle of the second type of cratons has geochemical features peculiar to PM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Artemieva, I.M., Global 1° × 1° thermal model TC1 for the continental lithosphere: Implications for lithosphere secular evolution, Tectonophysics, 2006, vol. 416, pp. 245–277.

    Article  Google Scholar 

  2. Artemieva, I.M. and Mooney, W.D., Thermal thickness and evolution of Precambrian lithosphere: A global study, J. Geophys. Res., 2001, vol. 106, no. B8, pp. 16387–16414.

    Article  Google Scholar 

  3. Ashchepkov, I.V., Logvinova, A.M., Ntaflos, T., Vladykin, N.V., Kostrovitsky, S.I., Spetsius, Z., Mityukhin, S.I., Prokopyev, S.A., Medvedev, N.S., and Downes, H., Alakit and Daldyn kimberlite fields, Siberia, Russia: Two types of mantle sub-terranes beneath central Yakutia?, Geosci. Front., 2017, vol. 8, no. 4, pp. 671–692.https://doi.org/10.1016/j.gsf.2016o8.0004

    Article  Google Scholar 

  4. Ashchepkov, I.V., Ivanov, A.S., Kostrovitsky, S.I., Vavilov, M.A., Babushkina, S.A., Vladykin, N.V., Tychkov, N.S., and Medvedev, N.S., Mantle terranes of the Siberian craton: their interaction with plume melts based on thermobarometry and geochemistry of mantle xenocrysts, Geodyn. Tectonophys., 2019, vol. 10, no. 2, pp. 197–245. https://doi.org/10.5800/GT-2019-10-2-0412

    Article  Google Scholar 

  5. Aulbach, S., Pearson, N.J., O’Reilly, S.Y., and Doyle, B.J., Origins of xenolithic eclogites and pyroxenites from the Central Slave Craton, Canada, J. Petrol., 2007, vol. 48, no. 10, pp. 1843–1873.

    Article  Google Scholar 

  6. Ayers, J.C., Trace element modeling of aqueous fluid–peridotite interaction in the mantle wedge of subduction zones, Contrib. Mineral. Petrol., 1998, vol. 132, pp. 390–404.

    Article  Google Scholar 

  7. Ayers, J.C. and Watson, E.B., Rutile solubility and mobility in supercritical aqueous fluids, Contrib. Mineral. Petrol., 1993, vol. 114, pp. 321–330.

    Article  Google Scholar 

  8. Bishop, F.C., Smith, J.V., and Dawson, J.B., Na, K, P and Ti in garnet, pyroxene and olivine from peridotite and eclogite xenoliths from African kimberlites, Lithos, 1978, vol. 11, pp. 155–173.

    Article  Google Scholar 

  9. Boyd, F.R., Pearson, D.G., Hoal, K.O., Hoal, B.G., Nixon, P.H., Kingston, M.J., and Mertzman, S.A., Garnet lherzolites from Louwrensia, Namibia: bulk composition and P/T relations, Lithos, 2004, vol. 77, pp. 573–592.

    Article  Google Scholar 

  10. Brenan, J.M., Shaw, H.F., Phinney, D.L., and Ryerson, F.J., Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: implications for high field strength element depletions in island-arc basalts, Earth Planet. Sci. Lett., 1994, vol. 12, pp. 327–339.

    Article  Google Scholar 

  11. Bundy, F.P., Basset, W.A., Weathers, M.S., Hemley, R.J., Mao, H.U., and Goncharov, A.F., The pressure-temperature phase and transformation diagram for carbon; updated through 1994, Carbon, 1996, vol. 34, no. 2, pp. 141–153.

    Article  Google Scholar 

  12. Chavagnac, V., A geochemical and Nd isotopic study of Barberton komatiites [South Africa]: implication for the Archean mantle, Lithos, 2004, vol. 75, pp. 253–281. https://doi.org/10.1016/j.lithos.2004.03.001

    Article  Google Scholar 

  13. Choi, S.H., Suzuki, K., Mukasa, S.B., Lee, J.-I., and Jung, H., Lu-Hf and Re-Os systematics of peridotite xenoliths from Spitsbergen, western Svalbard: Implications for mantle-crust coupling, Earth Planet. Sci. Lett., 2010, vol. 297, pp. 121–132.

    Article  Google Scholar 

  14. Danchin, R.F. and Boyd, F.R., Ultramafic nodules from premier kimberlite pipe, South Africa, Year Book–Carnegie Inst. Washington, 1976, vol. 75, pp. 531–538.

    Google Scholar 

  15. Foley, S.F., Barth, M.G., and Jenner, G.A., Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas, Geochim. Cosmochim. Acta, 2000, vol. 64, pp. 933–938.

    Article  Google Scholar 

  16. Francis, D., Cratonic mantle roots, remnants of a more chondritic Archean mantle?, Lithos, 2003, vol. 71, pp. 135–152.

    Article  Google Scholar 

  17. Francis, D., Ludden, J., Johnstone, R., and Davis, W., Picrite evidence for more Fe in Archean mantle reservoirs, Earth Planet. Sci. Lett., 1999, vol. 167, pp. 197–213.

    Article  Google Scholar 

  18. Gao, Sh. and Rudnick, R.L., Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton, Earth Planet. Sci. Lett., 2002, vol. 198, pp. 307–322.

    Article  Google Scholar 

  19. Glebovitsky, V.A., Nikitina, L.P., Ovchinnikov, N.O., Saltykova, A.K., Egorov, K.N., and Ashchepkov, I.V., Geochemistry of mantle xenoliths from kimberlites and alkaline basalts as a reflection of the material heterogeneity of the continental lithospheric mantle, Tr. IV Mezhdunar. semin.: Glubinnyi magmatizm, ego istochniki i ikh svyaz’ s plyumovymi protsessami (Proc. IV Int. Workshop: Deep-Seated Magmatism, Its Cources and Their Relation to Plume Processes), Irkutsk, Ulan-Ude, 2004, Irkutsk: IG SO RAN, 2004, pp. 162–190.

  20. Glebovitsky, V.A, Nikitina, L.P., Ovchinnikov, N.O., Pushkarev, Yu.D., Pestrikov, A.A., and Babushkina, M.S., Upper mantle under Archean cratons: thermal state, chemical composition, degree of melting (data on deep xenoliths), Tr. V Mezhdunar. semin.: Problemy istochnikov glubinnogo magmatizma i plyumy (Proc. V Int. Workshop: Problems of Sources of Deep Magmatism and Plumes), Irkutsk, Petropavlovsk-Kamchatskii, 2005, Irkutsk: Nauka, 2005, pp. 80–97.

  21. Glebovitsky, V.A., Nikitina, L.P., Saltykova, A.K., Ovchinnikov, N.O., Babushkina, M.S., Egorov, K.N., and Ashchepkov, I.V., Compositional heterogeneity of the continental lithospheric mantle beneath the Early Precambrian and Phanerozoic structures: Evidence from mantle xenoliths in kimberlites and alkaline basalts, Geochem. Int., 2007, vol. 45, pp. 1077–1102.

    Article  Google Scholar 

  22. Glebovitsky, V.A., Nikitina, L.P., Vrevskii, A.B., Pushkarev, Y.D., Babushkina, M.S., and Goncharov, A.G., Nature of the chemical heterogeneity of the continental lithospheric mantle, Geochem. Int., 2009, vol. 47, no. 9, pp. 857–881. https://doi.org/10.1134/S001670290909002X

    Article  Google Scholar 

  23. Goncharov, A.G. and Ionov, D.A., Redox state of deep off-craton lithospheric mantle: new data from garnet and spinel peridotites from Vitim, southern Siberia, Contrib. Mineral. Petrol., 2012, vol. 164, pp. 731–745.

    Article  Google Scholar 

  24. Goncharov, A.G., Ionov, D.A., Doucet, L.S., and Pokhi-lenko, L.N., Thermal state, oxygen fugacity and C–O–H fluid speciation in cratonic lithospheric mantle: New data on peridotite xenoliths from the Udachnaya kimberlite, Siberia, Earth Planet. Sci. Lett., 2012, vols. 357–358, pp. 99–110. https://doi.org/10.1016/j.epsl.2012.09.016

    Article  Google Scholar 

  25. Goncharov, A.G., Nikitina, L.P., Borovkov, N.V., et al., Thermal and redox equilibrium conditions of the upper-mantle xenoliths from the Quaternary volcanoes of NW Spitsbergen, Svalbard Archipelago, Russ. Geol. Geophys., 2015, vol. 56, pp. 1578–1602. https://doi.org/10.1016/j.rgg.2015.10.006

    Article  Google Scholar 

  26. Grégoire, M., Bell, D.R., and Le Roex, A.P., Garnet lherzolites from the Kaapvaal Craton [South Africa]: trace element evidence for a metasomatic history, J. Petrol., 2003, vol. 44, pp. 629–657.

    Article  Google Scholar 

  27. Greighton, S., Stachel, T., Eichenberg, D., and Luth, R.W., Oxidation state of the lithospheric mantle beneath Diavik diamond mine, central Slave craton, NWT, Canada, Contrib. Mineral. Petrol., 2010, vol. 159, pp. 645–657.

    Article  Google Scholar 

  28. Griffin, W.L., Spetsius, Z.V., Pearson, N.J., and O’Reilly, S.Y., In situ Re-Os analysis of sulfide inclusions in kimberlitic olivine: New constraints on depletion events in the Siberian lithospheric mantle, Geochem. Geophys. Geosyst., 2002, vol. 3, no. 11. ISSN: 1525-2027.https://doi.org/10.1029/2001GC000287

  29. Griffin, W.L., O’Reilly, S.Y., Abe, N., Aulbach, S., Davies, R.M., et al., The origin and evolution of Archean lithospheric mantle, Precambrian Res., 2003, vol. 127, pp. 19–41.

    Article  Google Scholar 

  30. Grütter, H.S., Gurney, J.J., Menzies, A.H., and Winter, F., An updated classification scheme for mantle-derived garnet, for use by diamond explorers, Lithos, 2004, vol. 77, pp. 841–857.

    Article  Google Scholar 

  31. Harvey, J., Warren, J.M., and Shirey, S.B., Mantle Sulfides and their Role in Re–Os and Pb Isotope Geochronology, Rev. Mineral. Geochem., 2016, vol. 81, pp. 579–649.

    Article  Google Scholar 

  32. Hasterok, D. and Chapman, D.S., Heat production and geotherms for the continental lithosphere, Earth Planet. Sci. Lett., 2011, vol. 307, nos. 1–2, pp. 59–70. https://doi.org/10.1016/j.epsl.2011.04.034

    Article  Google Scholar 

  33. Helmstaedt, H., Gurney, J., and Richardson, S., Ages of cratonic diamond and lhithosphere evolution: constraints on Precambrian tectonics and diamond exploration, Can. Mineral., 2010, vol. 48, pp. 1385–1408. https://doi.org/10.3749/canmin.48.5.1385

    Article  Google Scholar 

  34. Hoal, K.O., Samples of Proterozoic iron-enriched mantle from the Premier kimberlite, Lithos, 2003, vol. 71, nos. 2–4, pp. 259–272. www.elsevier.com/locate/lithos

    Article  Google Scholar 

  35. Jordan, T.H., Structure and formation of the continental tectosphere, J. Petrol., 1988, Spec. vol., no. 1, pp. 11–37.

  36. Kalashnikova, T.V., Geochemical characteristics and petrogenesis of mantle xenoliths from the Naked kimberlite pipe (Yakutsk kimberlite province), Extended Abstract of Cand. Sci. (Geol.–Mineral.) Dissertation, Irkutsk: Vinogradov Institute of Geochemistry SB RAS, 2017.

  37. Kerrich, R. and Xie, Q., Compositional recycling structure of an Archean super-plume: Nb-Th-U-LREE systematics of Archean komatiites and basalts revisited, Contrib. Mineral. Petrol., 2002, vol. 142, pp. 476–484.

    Article  Google Scholar 

  38. Khain, V.E. and Filatova, N.I., From Hyperborea to Arctida: The problem of the Precambrian Central Arctic Craton, Dokl. Earth Sci., 2009, vol. 428, no. 1, pp. 1076–1079. https://doi.org/10.1134/S1028334X09070071

    Article  Google Scholar 

  39. Kukkonen, I.T., Kinnunen, K.A., and Peltonen, P., Mantle xenoliths and thick lithosphere in the Fennoscandian shield, Phys. Chem. Miner., 2003, vol. 28, pp. 349–360.

    Google Scholar 

  40. Kuskov, O.L., Kronrod, V.A., Prokofyev, A.A., and Pavlenkova, N.I., Lithospheric mantle structure of the Siberian craton inferred from the superlong Meteorite and Rift seismic profiles, Russ. Geol. Geophys., 2014, vol. 55, pp. 892–906.https://doi.org/10.1016/j.rgg.2014.06.008

  41. Lazarov, M., Archean to present day evolution of the lithospheric mantle beneath the Kaapvaal craton, Ph. D. Dissertation, Frankfurt: Goethe-Univ. Frankfurt am Main, 2008.

  42. Lenoir, X., Garrido, C.J., Bodinier, J.-L., Dautria, J.-M., and Gervilla, F., The recrystallization front of the Ronda peridotite: Evidence for melting and thermal erosion of subcontinental lithospheric mantle beneath the Alboran Basin, J. Petrol., 2001, vol. 42, pp. 141–158.

    Article  Google Scholar 

  43. Lian, D., Liu, F., Wu, W., Zhang, L., Zhao, H., and Huang, J., Gochemistry and tectonic significance of the Gongzhu peridotites in the northern branch of the western Yarlung Zangbo ophiolitic belt, western Tibet, Mineral. Petrol., 2017, vol. 111, no. 5, pp. 729–746. https://doi.org/10.1007/s00710-017-0491-5

    Article  Google Scholar 

  44. Meibom, A., Sleep, N.H., Chamberlain, C.P., Coleman, R.G., Frei, R., Hren, M.T., and Wooden, J.L., Re-Os isotopic evidence for long-lived heterogeneity and equilibration processes in the Earth’s upper mantle, Nature, 2002, vol. 419, pp. 705–708.

    Article  Google Scholar 

  45. Meisel, T., Walker, R.J., Irving, A.J., and Lorand, J.-P., Osmium isotopic compositions of mantle xenoliths: a global perspective, Geochim. Cosmochim. Acta, 2001, vol. 65, pp. 1311–1323.

    Article  Google Scholar 

  46. Menzies, A.H., Westerlund, K., Grutter, H., Gurney, J.J., Carlson, J., Fung, F., and Nowiski, T., Peridotite mantle xenoliths from kimberlites on the Ekati Diamod Mine property, N.W.T. Canada: Major element composition for the lithosphere beneath the Central Slave craton, Lithos, 2004, vol. 77, nos. 2–4, pp. 395–412. https://doi.org/10.1016/j.lithos.2004.04.013

    Article  Google Scholar 

  47. Mitchell, R.H., Garnet Lherzolites from Hanaus-I and Louwrensia Kimberlites of Namibia, Contrib. Mineral. Petrol., 1984, vol. 86, pp. 178–188.

    Article  Google Scholar 

  48. Munker, C., Pfander, J.A., Weyer, S., Buchl, A., Kleine, Th., and Mezger, K., Evolution of Planetary Cores and Earth-Moon system from Nb/Ta systematics, Science, 2003, vol. 301, pp. 84–87.

    Article  Google Scholar 

  49. Nebel, W., van Westrenen Vroon, P.Z., Wille, M., and Raith, M.M., Deep mantle storage of the Earth’s missing niobium in late-stage residual melts from a magma ocean, Geochim. Cosmochim. Acta, 2010, vol. 74, pp. 4392–4404.

    Article  Google Scholar 

  50. Nikitina, L.P. and Babushkina, M.S., Superchondrite Nb/Ta and Zr/Hf ratios in peridotites and eclogites of the subcontinental lithospheric mantle: data from mantle xenoliths, Vestn. SPbGU, Nauki Zemle, 2019, vol. 64, no. 2, pp. 294–314.

    Google Scholar 

  51. Nikitina, L.P., Goncharov, A.G., Saltykova, A.K., and Babushkina, M.S., The redox state of the continental lithospheric mantle of the Baikal-Mongolia region, Geochem. Int., 2010, vol. 48, no. 1, pp. 15–40.

    Article  Google Scholar 

  52. Nikitina, L.P., Belyatskii, B.V., Krymskii, R.Sh., et al., 187Re-187Os systematics of rocks of subcontinental lithospheric mania (based on mantle xenoliths), in Evolyutsiya veshchestvennogo i izotopnogo sostava dokembriiskoi litosfery (Evolution of the Material and Isotopic Composition of the Precambrian Lithosphere), Glebovitskiy, V.A., and Baltybaev, Sh.K., Eds., St. Petersburg: Izd.-Poligraf. Assots. Vyssh. Uchebn. Zaved., 2018, pp. 145–164.

  53. Nikitina, L.P., Goncharov, A.G., Bogomolov, E.S., Beliatsky, B.V., Krimsky, R.Sh., Prichod’ko, V.S., Babushkina, M.S., and Karaman, A.A., HFSE and REE geochemistry and Nd-Sr-Os systematics of peridotites in the subcontinental lithospheric mantle of the Siberian craton and Central Asian Fold Belt junction area: data on mantle Xenoliths, Petrology, 2020, vol. 28, no. 2, pp. 207–219. https://doi.org/10.31857/S0869590320020053

    Article  Google Scholar 

  54. O’Neill, H.S.C., The transition between spinel lherzolite and garnet lherzolite, and its use as a geobarometer, Contrib. Mineral. Petrol., 1981, vol. 77, pp. 185–194.

    Article  Google Scholar 

  55. O’Reilly, S.Y. and Griffin, W.L., The continental lithosphere—asthenosphere boundary: Can we sample it?, Lithos, 2010, vol. 120, pp. 1–13.

    Article  Google Scholar 

  56. Palme, H., O’Neill, H.S.C., Holland, H.D., and Turekian, K.K., Cosmochemical estimates of mantle composition, in Treatise on Geochemistry, vol. 2: The Mantle and Core, Carlson R.W., Ed., Amsterdam: Elsevier, 2003, pp. 1–38.

  57. Pearson, D.G. and Wittig, N., The formation and evolution of cratonic mantle lithosphere—evidence from mantle xenoliths, in Treatise on Geochemistry, 2nd ed., Amsterdam: Elsevier, 2014, vol. 3, pp. 255–290.

    Google Scholar 

  58. Pearson, D.G., Shirey, S.B., Carlson, R.W., Boyd, F.R., Pokhilenko, N.P., and Shimizu, N., Re–Os. Sm–Nd and Rb–Sr isotope evidence for thick Archaean lithospheric mantle beneath the Siberian craton modified by multi-stage metasomatism, Geochim. Cosmochim. Acta, 1995a, vol. 59, pp. 959–977.

    Google Scholar 

  59. Pearson, D.G., Carlson, R.W., Shirey, S.B., Boyd, F.R., and Nixon, P.H., The stabilisation of Archean lithospheric mantle: a Re-Os isotope study of peridotite xenoliths from the Kaapvaal craton, Earth Planet. Sci. Lett., 1995b, vol. 134, pp. 341–357.

    Article  Google Scholar 

  60. Pearson, D.G., Shirey, S.B., Bulanova, G.P., et al., Single crystal Re-Os isotope study of sulfide inclusions from a zoned Siberian diamond, Geochim. Cosmochim. Acta, 1999, vol. 63, pp. 703–712.

    Article  Google Scholar 

  61. Pearson, D.G., Irvine, G.J., Ionov, D.A., et al., Re-Os isotope systematic and Platinum Group Element fractionation during mantle melt extraction: A study of massif and xenolith peridotite suites, Chem. Geol., 2004, vol. 208, pp. 29–59.

    Article  Google Scholar 

  62. Peltonen, P., Huhma, H., Tuni, M., and Shimizu, N., Garnet peridotite xenoliths from kimberlites of Finland: nature of the continental mantle at the archean craton-proterozoic mobile belt transition, Proc. 7th Int. Kimb. Conf., Cape Town, 1998, Cape Town: Red Roof Design, 1999, vol. 2, pp. 664–676.

  63. Puchtel, I.S. and Zhuravlev, D.Z., Petrology of mafic-ultramafic metavolcanics and related rocks from the Olondo greenstone belt, Aldan Shield, Petrology, 1993, vol. 1, no. 3, pp. 263–299.

    Google Scholar 

  64. Richardson, S.H., Pöml, P.F., Shirey, S.B., and Harris, J.W., Age and origin of peridotitic diamonds from Venetia, Limpopo Belt, Kaapvaal–Zimbabwe craton, Lithos, 2009, vol. 112, pp. 785–792.

    Article  Google Scholar 

  65. Rickard, R.S., Harris, J.W., Gurney, J.J., and Cardoso, P., Mineral inclusions in diamonds from Koffiefontein mine, Proc. 4th Int. Kimberlite Conf.: Kimberlites and Related Rocks, Perth, 1986, Ross, J., et al., Eds., Geol. Soc. Aust., Spec. Publ., no. 14, Carlton: Blackwell, 1989, vol. 2, pp. 1054–1062.

  66. Robinson, J.A.C. and Wood, B.J., The depth of the spinel to garnet transition at the peridotite solidus, Earth Planet. Sci. Lett., 1998, vol. 164, nos. 1–2, pp. 277–284.

    Article  Google Scholar 

  67. Roden, M.F., Patiñio-Douce, A.E., Jagoutz, E., and Laz’ko, E.E., High pressure petrogenesis of Mg-rich garnet pyroxenites, Lithos, 2006, vol. 90, pp. 77–91.

    Article  Google Scholar 

  68. Rudnick, R.L., Gao, S., Ling, W.L., Liu, Y.S., and McDonough, W.F., Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China Craton, Lithos, 2004, vol. 77, pp. 609–637.

    Article  Google Scholar 

  69. Sablukov, S.M., Sablukova, L.I., and Shavyrina, M.V., Mantle xenoliths from the Zimnii Bereg kimberlite deposits of rounded diamonds, Arkhangelsk diamondiferous province, Petrology, 2000, vol. 8, no. 5, pp. 466–494.

    Google Scholar 

  70. Saltykova, A.K., Nikitina, L.P., and Matukov D.I., U-Pb age of zircons from xenoliths of mantle peridotites in Cenozoic alkaline basalts of the Vitim plateau (Transbaikalia), Zap. Ross. Mineral. O-va, 2008, vol. 137, no. 3, pp. 1–22.

    Google Scholar 

  71. Sand, K.K., Waight, T.E., Pearson, D.G., Nielsen, T.F.D., Makovicky, E., and Hutchison, M.T., The lithospheric mantle below southern West Greenland: A geothermobarometric approach to diamond potential and mantle stratigraphy, Lithos, 2009, vol. 112S, pp. 1155–1166.

    Article  Google Scholar 

  72. Schmidberger, S.S. and Francis, D., Nature of the mantle root beneath the North American craton: mantle xenolith evidence from Somerset Island kimberlites, Lithos, 1999, vol. 48, pp. 195–217.

    Article  Google Scholar 

  73. Shi, R.D., Griffin, W.L., O’Reilly, S.Y., Zhao, G.C., Huang, O.S., Li, J., and Xu, J.F., Evolution of the Lüliangshan garnet peridotites in the North Qaidam UHP belt, Northern Tibetan Plateau: Constraints from Re–Os isotopes, Lithos, 2010, vol. 117, pp. 307–321.

    Article  Google Scholar 

  74. Shmelev, V.R., Mantle ultrabasites of ophiolite complexes in the Polar Urals: Petrogenesis and geodynamic environments, Petrology, 2011, vol. 19, no. 6, pp. 618–640.

    Article  Google Scholar 

  75. Stalder, R., Foley, S.F., Brey, G.P., and Horn, I., Mineral-aqueous fluid partitioning of trace elements at 900–1200 degrees C and 3.0 GPa: New experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism, Geochim. Cosmochim. Acta, 1998, vol. 62, no. 10, pp. 1781–1801.

    Article  Google Scholar 

  76. Walter, M., Katsura, T., Kubo, A., Nishikawa, O., Ito, E., Lesher, C., and Funakoshi, K., Spinel-garnet transition in the system CaO–MgO–Al2O3–SiO2 revisited: an in situ X‑ray study, Geochim. Cosmochim. Acta, 2002, vol. 60, no. 12, pp. 2109–2121.

    Article  Google Scholar 

  77. Westerlund, K.J., Shirey, S.B., Richardson, S.H., Carlson, R.W., Gurney, J.J., and Harris, J.W., A subduction wedge origin for Paleoarchean peridotitic diamonds and harzburgites from the Panda kimberlite, Slave craton: evidence from Re-Os isotope systematic, Contrib. Mineral. Petrol., 2006, vol. 152, pp. 275–294.

    Article  Google Scholar 

  78. Wu, F.-Y., Walker, R.J., Ren, X., Sun, D., and Zhou, X., Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China, Chem. Geol., 2003, vol. 196, 107–129.

    Article  Google Scholar 

  79. Wu, F.-Y., Walker, R.J., Yang, Y.-H., Yuan, H.-L., and Yang, J.-H., The chemical-temporal evolution of lithospheric mantle underlying the North China Craton, Geochim. Cosmochim. Acta, 2006, vol. 70, pp. 5013–5034.

    Article  Google Scholar 

  80. Xu, X., O’Reilly, S.Y., Zhou, X., and Griffin, W.L., A xenolith-derived geotherm and the crust–mantle boundary at Qilin, southeastern China, Lithos, 1996, vol. 38, nos. 1–2, pp. 41–62.

    Article  Google Scholar 

  81. Xu, X., O’Reilly, S., Griffin, W.L., and Zhou, X., Genesis of young lithospheric mantle in southeastern China: an LAM-ICPMS trace element study, J. Petrol., 2000, vol. 41, no. 1, pp. 111–148.

    Article  Google Scholar 

  82. Xu, X., O’Reilly, S.Y., Griffin, W.L., and Zhou, X., Enrichment of upper mantle peridotite: petrological, trace element and isotopic evidence in xenoliths from SE China., Chem. Geol., 2003, vol. 198, pp. 163–188.

    Article  Google Scholar 

  83. Xu, Y.-G., Evidence for crustal components in the mantle and constraints on crustal recycling mechanisms: pyroxenite xenoliths from Hannuoba, North China, Chem. Geol., 2002, vol. 182, pp. 301–32.

    Article  Google Scholar 

  84. Zhai, Q.G., Jahn, B.M., Zhang, R.Y., Wang, J., and Su, L., Triassic Subduction of the Paleo-Tethys in northern Tibet, China: Evidence from the geochemical and isotopic characteristics of eclogites and blueschists of the Qiangtang Block, J. Asian Earth Sci., 2011, vol. 42, pp. 1356–1370. https://doi.org/10.1016/j.jseaes.2011.07.023

    Article  Google Scholar 

  85. Zhang, H., Goldstein, S.L., Zhou, X.-H., Sun, M., Zheng, Ji-P., and Cai, Y., Evolution of subcontinental lithospheric mantle beneath eastern China: Re–Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts, Contrib. Mineral. Petrol., 2008, vol. 155, pp. 271–293. https://doi.org/10.1007/s00410-007-0241

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.B. Vrevskii (Institute of Precambrian Geology and Geochronology of Russian Academy of Sciences) and O.L. Kuskov (Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences) for their discussions and valuable comments.

Funding

The work was carried out under the state budget-funded project no. 0153-2018-0012.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. P. Nikitina or M. S. Babushkina.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitina, L.P., Babushkina, M.S. Nb–Zr–Y Systematics and Thermal Regimes of Subcontinental Lithospheric Mantle in the Archaean: Data from Mantle Xenoliths. Izv., Phys. Solid Earth 57, 217–231 (2021). https://doi.org/10.1134/S1069351321020075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351321020075

Keywords:

Navigation