Skip to main content
Log in

The State of the Art in Studying the Deep Structure of the Earth’s Crust and Upper Mantle beneath the Baikal Rift from Seismological Data

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—This review discusses the major milestone results yielded by the regional seismological studies of the deep structure of the Earth’s crust and mantle beneath the Baikal rift since the 1960s to present. It also includes data from recent global models covering a depth interval to below 400 km rarely considered in regional studies. The main focus of the review is laid on the intercomparison of various velocity models of the region, sometimes substantially contradicting each other, which determines the pertinence of this work. In particular, there has been no consensus among different authors as to the crustal thinning beneath the Baikal rift, the thickness of the anomalous mantle layer and the lithosphere. For establishing the causes of the revealed discrepancies, the review briefly compares the inversion methods used in the studies and their resolution. Separate discussion is dedicated to anisotropic properties of the upper-mantle material which is studied from splitting of SKS-waves and from phase and group velocity dispersion data of surface waves. The Conclusions section presents the additional information which can be used for verifying a particular model: there are the results of the studies of thermal, gravitational, geomagnetic, and geoelectric fields and some geological data. The implications of geophysical data covered by the review for the ongoing discussion on the origin of lithospheric extension in the Baikal rift zone are analyzed. It is shown that most of the data (low surface heat flow values and temperatures in the mantle, fairly large bottom depths of the lithospheric magnetic sources, the estimates of the lithospheric thickness from gravimetric and geoelectric data) including purely seismological results (the absence of a general thinning of the crust and lithosphere along the entire rift axis) as well as some geological data contradict the hypotheses of active rifting. However, the existing deep structure models are inconclusive for the ultimate choice between the hypotheses explaining the rift formation by purely passive or mixed mechanisms. The solution of this question requires further, more detailed geophysical study. Thus, the presented review of the deep structure of the Earth’s crust and mantle of the Baikal rift provides the framework for assessing the results of the previous geophysical studies and outlining the prospects of the future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Achauer, U. and Masson, F., Seismic tomography of continental rifts revisited: from relative to absolute heterogeneities, Tectonophysics, 2002, vol. 358, pp. 17–37. https://doi.org/10.1016/S0040-1951(02)00415-8

    Article  Google Scholar 

  2. Alexandrakis, C., Calò, M., Bouchaala, F., and Vavryčuk, V., Velocity structure and the role of fluids in the West Bohemia seismic zone, Solid Earth, 2014, vol. 5, pp. 863–872. https://doi.org/10.5194/se-5-863-2014

    Article  Google Scholar 

  3. Artemieva, I.M., Global 1 × 1 thermal model TC1 for the continental lithosphere: Implications for lithosphere secular evolution, Tectonophysics, 2006, vol. 416, pp. 245–277. https://doi.org/10.1016/j.tecto.2005.11.022

    Article  Google Scholar 

  4. Barmin, M.P., Ritzwoller, M.H., and Levshin, A.L., A fast and reliable method for surface wave tomography, Pure Appl. Geophys., 2001, vol. 158, pp. 1351–1375.

    Article  Google Scholar 

  5. Bijwaard, H., Spakman, W., and Engdahl, E.B., Closing the gap between regional and global travel time tomography, J. Geophys. Res., 1998, vol. 103, no. B12, pp. 30055–30078.

    Article  Google Scholar 

  6. Bushenkova, N., Tychkov, S., and Koulakov, I., Tomography on PP-P waves and its application for investigation of the upper mantle in Central Siberia, Tectonophysics, 2002, vol. 358, pp. 57–76. https://doi.org/10.1016/S0040-1951(02)00417-1

    Article  Google Scholar 

  7. Chemenda, A., Deverchere, J., and Calais, E., Three-dimensional laboratory modeling of rifting: application to the Baikal Rift, Russia, Tectonophysics, 2002, vol. 356, pp. 253–273. https://doi.org/10.1016/S0040-1951(02)00389-X

    Article  Google Scholar 

  8. Chen, Y., Badal, J., and Zhang, Z., Radial anisotropy in the crust and upper mantle beneath the Qinghai-Tibet Plateau and surrounding regions, J. Asian Earth Sci., 2009, vol. 36, pp. 289–302. https://doi.org/10.1016/j.jseaes.2009.06.011

    Article  Google Scholar 

  9. Cherepanova, Y., Artemieva, I.M., Thybo, H., and Chemia, Z., Crustal structure of the Siberian craton and the West Siberian basin: an appraisal of existing data, Tectonophysics, 2013, vol. 609, pp. 154–183. https://doi.org/10.1016/j.tecto.2013.05.004

    Article  Google Scholar 

  10. Debayle, E. and Ricard, Y., Seismic observations of large-scale deformation at the bottom of fast moving plates, Earth Planet. Sci. Lett., 2013, vol. 376, pp. 165–177. https://doi.org/10.1016/j.epsl.2013.06.025

    Article  Google Scholar 

  11. Debayle, E. and Sambridge, M., Inversion of massive surface wave data sets: Model construction and resolution assessment, J. Geophys. Res., 2004, vol. 109, Paper ID B02316. https://doi.org/10.1029/2003JB002652

  12. Delvaux, D., Moeys, R., Stapel, G., Petit, C., Levi, K., Miroshnichenko, A., Ruzhich, V., and San’kov, V., Paleostress reconstructions and geodynamics of the Baikal region, Central Asia, Part 2. Cenozoic rifting, Tectonophysics, 1997, vol. 282, pp. 1–38. https://doi.org/10.1016/S0040-1951(97)00210-2

    Article  Google Scholar 

  13. Deuss, A., Global observations of mantle discontinuities using SS and PP precursors, Surv. Geophys., 2009, vol. 30, nos. 4–5, pp. 301–326. https://doi.org/10.1007/s10712-009-9078-y

    Article  Google Scholar 

  14. Deuss, A., Andrews, J., and Day, E., Seismic observations of mantle discontinuities and their mineralogical and dynamical interpretation, in Physics and Chemistry of the Deep Earth, Karato, S., Ed., Oxford: Wiley-Blackwell, 2013, pp. 297–323.

    Google Scholar 

  15. Duchkov, A.D. and Sokolova, L.S., Thermal structure of the lithosphere of the Siberian Platform, Geol. Geofiz., 1997, vol. 38, no. 2, pp. 494–503.

    Google Scholar 

  16. Duchkov, A.D., Lysak, S.V., Golubev, V.A., Dorofeeva, R.P., and Sokolova, L.S., Heat flow and geotemperature field in the Baikal region, Geol. Geofiz., 1999, vol. 40, no. 3, pp. 287–303.

    Google Scholar 

  17. Dziewonski, A.M. and Anderson, D.L., Preliminary reference Earth model, Phys. Earth Planet. Inter., 1981, vol. 25, pp. 297–356. https://doi.org/10.1016/0031-9201(81)90046-7

    Article  Google Scholar 

  18. Ekström, G., A global model of Love and Rayleigh surface wave dispersion and anisotropy, 25–250 s, Geophys. J. Int., 2011, vol. 187, pp. 1668–1686. https://doi.org/10.1111/j.1365-246X.2011.05225.x

    Article  Google Scholar 

  19. Farra, V. and Vinnik, L., Upper mantle stratification by P and S receiver functions, Geophys. J. Int., 2000, vol. 141, pp. 699–712. https://doi.org/10.1046/j.1365-246x.2000.00118.x

    Article  Google Scholar 

  20. Flanagan, M.P. and Shearer, P.M., Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors, J. Geophys. Res., 1998, vol. 103, no. B2, pp. 2673–2692. https://doi.org/10.1029/97JB03212

    Article  Google Scholar 

  21. Florensov, N.A., Baikal Rift Zone and some tasks of its study, in Baikal’skii rift (Baikal Rift), Moscow: Nauka, 1968, pp. 40–56.

  22. Forsyth, D.W., The early structural evolution and anisotropy of the oceanic upper mantle, Geophys. J. R. Astron. Soc., 1975, vol. 43, pp. 103–162. https://doi.org/10.1111/j.1365-246X.1975.tb00630.x

    Article  Google Scholar 

  23. Fouch, M.J. and Rondenay, S., Seismic anisotropy beneath stable continental interiors, Phys. Earth Planet. Inter., 2006, vol. 158, pp. 292–320. https://doi.org/10.1016/j.pepi.2006.03.024

    Article  Google Scholar 

  24. French, S.W. and Romanowicz, B.A., Whole-mantle radially anisotropic shear velocity structure from spectral element waveform tomography, Geophys. J. Int., 2014, vol. 199, pp. 1303–1327. https://doi.org/10.1093/gji/ggu334

    Article  Google Scholar 

  25. Friederich, W., The S-velocity structure of the East Asian mantle from inversion of shear and surface waveforms, Geophys. J. Int., 2003, vol. 153, pp. 88–102.

    Article  Google Scholar 

  26. Fullea, J., Lebedev, S., Agius, M.R., Jones, A.G., and Afonso, J.C., Lithospheric structure in the Baikal—central Mongolia region from integrated geophysical-petrological inversion of surface-wave data and topographic elevation, Geochem. Geophys. Geosyst., 2012, vol. 13, Paper ID Q0AK09. https://doi.org/10.1029/2012GC004138

  27. Gao, S., Davis, P.M., Liu, H., Slack, P.D., Zorin, Y.A., Logatchev, N.A., Kogan, M., Burkholder, P.D., and Meyer, R.P., Asymmetric upward of the asthenosphere beneath the Baikal rift zone, Siberia, J. Geophys. Res., 1994a, vol. 99, no. B8, pp. 15319–15330. https://doi.org/10.1029/94JB00808

    Article  Google Scholar 

  28. Gao, S., Davis, P.M., Liu, H., Slack, P.D., Zorin, Y.A., Mordvinova, V.V., Kozhevnikov, V.M., and Meyer, R.P., Seismic anisotropy and mantle flow beneath the Baikal rift zone, Nature, 1994b, vol. 371, pp. 149–151. https://doi.org/10.1038/371149a0

    Article  Google Scholar 

  29. Gao, S., Davis, P.M., Liu, H., Slack, P.D., Rigor, A.W., Zorin, Y.A., Mordvinova, V.V., Kozhevnikov, V.M., and Logatchev, N.A., SKS splitting beneath continental rift zones, J. Geophys. Res., 1997, vol. 102, no. B10, pp. 22781–22797. https://doi.org/10.1029/97JB01858

    Article  Google Scholar 

  30. Gao, S.S., Liu, K.H., Davis, P.M., Slack, P.D., Zorin, Y.A., Mordvinova, V.V., and Kozhevnikov, V.M., Evidence for small-scale mantle convection in the upper mantle beneath the Baikal rift zone, J. Geophys. Res., 2003, vol. 108, no. 4, pp. ESE 5-1–ESE 5-12. https://doi.org/10.1029/2002JB002039

  31. Gao, S.S., Liu, K.H., and Chen, C., Significant crustal thinning beneath the Baikal rift zone: New constraints from receiver function analysis, Geophys. Res. Lett., 2004, vol. 31, Paper ID L20610. https://doi.org/10.1029/2004GL020813

  32. Golenetskii, S.I., Seismicity of the Baikal Rift Zone, in Kontinental’nyi riftogenez (Continental Rifting), Moscow: Sovetskoe radio, 1977, pp. 56–64.

  33. Golubev, V.A., The most important exogenous factor in the formation of the Baikal thermal anomaly, in Teplovoe pole Zemli i metody ego izucheniya (Thermal Field of the Earth and Methods of Its Study), Moscow: RUDN, 2000, pp. 179–183.

  34. Golubev, V.A., Konduktivnyi i konvektivnyi vynos tepla v Baikal’skoi riftovoi zone (Conductive and Convective Heat Output in the Baikal Rift Zone), Novosibirsk: Geo, 2007.

    Google Scholar 

  35. Guo, Zh., Gao, X., Wang, W., and Yao, Zh., Upper- and mid-crustal radial anisotropy beneath the central Himalaya and southern Tibet from seismic ambient noise tomography, Geophys. J. Int., 2012, vol. 189, pp. 11693–1182. https://doi.org/10.1111/j.1365-246X.2012.05425.x

    Article  Google Scholar 

  36. Hauksson, E. and Haase, J.S., Three-dimensional V P and V P/V S velocity models of the Los Angeles basin and central Transverse Ranges, California, J. Geophys. Res., 1997, vol. 102, no. B3, pp. 5423–5453. https://doi.org/10.1029/96JB03219

    Article  Google Scholar 

  37. He, J., Wu, Q., Sandvol, E., Ni, J., Gallegos, A., Gao, M., Ulziibat, M., and Demberel, S., The crustal structure of southcentral Mongolia using receiver functions, Tectonics, 2016, vol. 35, pp. 1392–1403. https://doi.org/10.1002/2015TC004027

    Article  Google Scholar 

  38. Huang, J., Zhao, D., and Zheng, S., Lithospheric structure and its relationship to seismic and volcanic activity in southwest China, J. Geophys. Res.: Solid Earth, 2002, vol. 107, no. B10, pp. ESE 13-1–ESE 13-14. https://doi.org/10.1029/2000JB000137

  39. Hurt, C.P., Moskowitz, B.M., and Banerjee, S.K., Magnetic properties of rocks and minerals, in Rock Physics and Phase Relations: A Handbook of Physical Constants, AGU Reference Shelf Ser., vol. 3, Washington: AGU, 1995, pp. 189–204.

  40. Hutchinson, D.R., Golmshtok, A.J., Zonenshain, L.P., Moore, T.C., Scholz, C.A, and Klitgord, K.D., Depositional and tectonic framework of the rift basins of Lake Baikal from multichannel seismic data, Geology, 1992, vol. 20, pp. 589–592. https://doi.org/10.1130/0091-7613(1992)020<0589:DATFOT>2.3.CO;2

    Article  Google Scholar 

  41. Hutchinson, D.R., Lee, M.W., Agena, W.F., Golmshtok, A.J., Moskalenko, V.N., Karapetov, K., Coleman, D.F., and Akentiev, L., Processing of Lake Baikal Marine Multichannel Seismic Reflection Data, U.S. Geological Survey Open-File Report 92-243, 1992. https://doi.org/10.3133/ofr92243

  42. Ionov, D., Mantle structure and rifting processes in the Baikal-Mongolia region: Geophysical data and evidence from xenoliths in volcanic rocks, Tectonophysics, 2002, vol. 351, pp. 41–60. https://doi.org/10.1016/S0040-1951(02)00124-5

    Article  Google Scholar 

  43. Ionov, D.A., O’Reilly, S.Y., and Ashchepkov, I.V., Feldspar-bearing lherzolite xenoliths in alkali basalts from Hamar-Daban, southern Baikal region, Russia, Contrib. Mineral. Petrol., 1995, vol. 122, pp. 174–190. https://doi.org/10.1007/s004100050120

    Article  Google Scholar 

  44. Jaupart, C., Mareschal, J.-C., and Iarotsky, L., Radiogenic heatproduction in the continental crust, Lithos, 2016, vol. 262, pp. 398–427. https://doi.org/10.1016/j.lithos.2016.07.017

    Article  Google Scholar 

  45. Johnson, J.S., Gibson, S.A., Thompson, R.N., and Nowell, G.M., Volcanism in the Vitim volcanic field, Siberia: Geochemical evidence for a mantle plume beneath the Baikal rift zone, J. Petrol., 2005, vol. 26, pp. 1309–1344. https://doi.org/10.1093/petrology/egi016

    Article  Google Scholar 

  46. Käufl, J.S., Grayver, A.V., Comeau, M.J., Kuvshinov, A.V., Becken, M., Kamm, J., Batmagnai, E., and Demberel, S., Magnetotelluric multiscale 3-D inversion reveals crustal and upper mantle structure beneath the Hangai and Gobi-Altai region in Mongolia, Geophys. J. Int., 2020, vol. 221, no. 2, pp. 1002–1028. https://doi.org/10.1093/gji/ggaa039

    Article  Google Scholar 

  47. Kennett, B.L.N. and Engdahl, E.R., Travel times for global earthquake location and phase association, Geophys. J. Int., 1991, vol. 105, pp. 429–465. https://doi.org/10.17611/DP/9991809

    Article  Google Scholar 

  48. Kennett, B.L.N., Engdahl, E.R., and Buland, B., Constraints on seismic velocities in the Earth from traveltimes, Geophys. J. Int., 1995, vol. 122, pp. 108–124. https://doi.org/10.1111/j.1365-246X.1995.tb03540.x

    Article  Google Scholar 

  49. Kiselev, A.I. and Popov, A.M., Asthenospheric diaper beneath the Baikal rift: Petrological constraints, Tectonophysics, 1992, vol. 208, pp. 287–295. https://doi.org/10.1016/0040-1951(92)90350-F

    Article  Google Scholar 

  50. Kiselev, A.I., Golovko, H.A., and Medvedev, M.E., Petrochemistry of Cenozoic basalts and associated rocks in the Baikal rift zone, Tectonophysics, 1978, vol. 45, pp. 49–59. https://doi.org/10.1016/0040-1951(78)90223-8

    Article  Google Scholar 

  51. Korotaev, S.M., Budnev, N.M., Serdyuk, V.O., Orekhova, D.A., Kruglyakov, M.S., Kiktenko, E.O., Mirgazov, R.R., Zurbanov, V.L., Gorokhov, Yu.V., and Ryabov, E.V., Baikal electromagnetic experiment, Geofiz. Protsessy Biosfera, 2018, vol. 17, no. 4, pp. 92–126. https://doi.org/10.21455/GPB2018.4-6

    Article  Google Scholar 

  52. Kosarev, G.L., Petersen, N.V., Vinnik, L.P., and Roecker, S.W., Receiver functions for the Tien Shan analog broadband network: Contrasts in the evolution of structures across the Talass-Fergana fault, J. Geophys. Res., 1993, vol. 98, no. B3, pp. 4437–4448. https://doi.org/10.1029/92JB02651

    Article  Google Scholar 

  53. Koulakov, I., High-frequency P and S velocity anomalies in the upper mantle beneath Asia from inversion of worldwide traveltime data, J. Geophys. Res., 2011, vol. 116, Paper ID B04301. https://doi.org/10.1029/2010JB007938

  54. Koulakov, I. and Bushenkova, N., Upper mantle structure beneath the Siberian craton and surrounding areas based on regional tomographic inversion of P and PP travel times, Tectonophysics, 2010, vol. 486, pp. 81–100. https://doi.org/10.1016/j.tecto.2010.02.011

    Article  Google Scholar 

  55. Koulakov, I., Tychkov, S., Bushenkova, N., and Vasilevskiy, A., Structure and dynamics of the upper mantle beneath the Alpine-Himalayan orogenic belt from teleseismic tomography, Tectonophysics, 2002, vol. 358, pp. 77–96. https://doi.org/10.1016/S0040-1951(02)00418-3

    Article  Google Scholar 

  56. Kozhevnikov, V.M. and Solovei, O.A., A 3D model of the Central Asia mantle from dispersion of Rayleigh-wave phase velocities, J. Volcanol. Seismol., 2010, vol. 4, no. 4, pp. 248–256.

    Article  Google Scholar 

  57. Kozhevnikov, V.M., Seredkina, A.I., and Solovei, O.A., 3D mantle structure of Central Asia from Rayleigh wave group velocity dispersion, Russ. Geol. Geophys., 2014, vol. 55, no. 10, pp. 1239–1247.

    Article  Google Scholar 

  58. Krylov, S.V. and Ten, E.N., Strength and elastic properties of focal zones of violent earthquakes within the Baikalian and North Tien Shan regions, Geol. Geofiz., 1995, vol. 36, no. 2, pp. 137–150.

    Google Scholar 

  59. Krylov, S.V., Mandel’baum, M.M., Mishen’kin, P.B., Mishen’kina, R.Z., Petrik, G.V., and Seleznev, V.S., Nedra Baikala: po seismicheskim dannym (Subsoil of Baikal: According to Seismic Data), Novosibirsk: Nauka, 1981.

  60. Krylov, S.V., Mishen’kina, Z.R., Kul’chinskii, Yu.V., Ten E.N., and Shelud’ko, I.F., Characteristics of the seismically active lithosphere for the northeast of the Baikal region according to the data of detailed work by the DSS method on P- and S-waves, Geol. Geofiz., 1993, no. 8, pp. 110–119.

  61. Kulakov, I.Yu., Three-dimensional seismic heterogeneities beneath the Baikal region according to data of local teleseismic tomography, Geol. Geofiz., 1999, vol. 40, no. 3, pp. 317–331.

    Google Scholar 

  62. Kustowski, B., Ekström, G., and Dziewonski, A.M., The anisotropic shear-wave velocity structure of the Earth’s mantle, J. Geophys. Res., 2008, vol. 113, Paper ID B06306. https://doi.org/10.1029/2007JB005169

  63. Kuznetsova, K.I., Lukina, N.V., Rebetskii, Yu.L., Mikhailova, A.V., and Kuchai, O.A., Strain of the crust and upper mantle of East Siberia with reference to continental orogenesis, Izv. Phys. Solid Earth, 2004, vol. 40, no. 7, pp. 543–551.

    Google Scholar 

  64. Laske, G., Masters, G., Ma, Z., and Pasyanos, M., Update on CRUST1.0—A 1-degree global model of Earth’s crust, Geophys. Res. Abstracts of the EGU, Vienna, 2013, Vienna: EGU, 2013, vol. 15, Paper ID EGU 2013-2658.

  65. Lebedev, S., Nolet, G., Meier, T., and van der Hilst, R.D., Automated multimode inversion of surface and S waveforms, Geophys. J. Int., 2005, vol. 162, pp. 951–964. https://doi.org/10.1111/j.1365-246X.2005.02708.x

    Article  Google Scholar 

  66. Lebedev, S., Meier, T., and van der Hilst, R.D., Asthenospheric flow and origin of volcanism in the Baikal Rift area, Earth Planet. Sci. Lett., 2006, vol. 249, pp. 415–424. https://doi.org/10.1016/j.epsl.2006.07.007

    Article  Google Scholar 

  67. Lei, J. and Zhao, D., Structural heterogeneity of the Longmenshan fault zone and the mechanism of the 2008 Wenchuan earthquake (Ms 8.0), Geochem. Geophys. Geosyst., 2009, vol. 10, Paper ID Q10010. https://doi.org/10.1029/2009GC002590

  68. Lesne, O., Calais, E., Deverchère, J., Hassani, R., and Chery, J., Dynamics of intracontinental extension in the North Baikal Rift from two-dimensional numerical deformation modeling, J. Geophys. Res., 2000, vol. 105, no. B9, pp. 21727–21744. https://doi.org/10.1029/2000JB900139

    Article  Google Scholar 

  69. Letnikov, F.A., Karpov, I.K., and Lashkevich, V.V., Computer simulation of the Fe2O3–Fe3O4–O2–H2 multisystem in the range of 200–1000°C and 1–10000 bar, in Flyuidnyi rezhim zemnoi kory i verkhnei mantii (Fluid Regime of the Earth’s Crust and Upper Mantle), Moscow: Nauka, 1977, pp. 33–34.

  70. Li, C.-F. and Wang, J., Variations in Moho and Curie depths and heat flow in Eastern and Southeastern Asia, Mar. Geophys. Res., 2016, vol. 37, pp. 1–20. https://doi.org/10.1007/s11001-016-9265-4

    Article  Google Scholar 

  71. Li, C.-F., Lu, Y., and Wang, J., A global reference model of Curie-point depths based on EMAG2, Sci. Rep., 2017, vol. 7, Paper ID 45129. https://doi.org/10.1038/srep45129

  72. Liu, K.H. and Gao, S.S., Mantle transition zone discontinuities beneath the Baikal rift and adjacent areas, J. Geophys. Res., 2006, vol. 111, Paper ID B11301. https://doi.org/10.1029/2005JB004099

  73. Logatchev, N.A., The Baikal rift system, Episodes, 1984, vol. 7, no. 1, pp. 38–42.

    Article  Google Scholar 

  74. Logatchev, N.A., History and geodynamics of the lake Baikal rift in the context of the Eastern Siberia rift system: a review, Bull. Cent. Rech. Explor.-Prod. Elf-Aquitaine, 1993, vol. 17, no. 2, pp. 353–360.

    Google Scholar 

  75. Logatchev, N.A., Main structural features and geodynamics of the Baikal Rift Zone, Fiz. Mezomekh., 1999, vol. 2, nos. 1–2, pp. 163–170.

    Google Scholar 

  76. Logachev, N.A., History and geodynamics of the Baikal Rift, Geol. Geofiz., 2003, vol. 44, no. 5, pp. 391–406.

    Google Scholar 

  77. Logatchev, N.A. and Florensov, N.A., The Baikal system of rift valleys, Tectonophysics, 1978, vol. 45, pp. 1–13. https://doi.org/10.1016/0040-1951(78)90218-4

    Article  Google Scholar 

  78. Logatchev, N.A. and Zorin, Yu.A., Evidence and causes of the two-stage development of the Baikal rift, Tectonophysics, 1987, vol. 143, pp. 225–234. https://doi.org/10.1016/0040-1951(87)90092-8

    Article  Google Scholar 

  79. Logatchev, N.A. and Zorin, Yu.A., Baikal rift zone: structure and geodynamics, Tectonophysics, 1992, vol. 208, pp. 273–286. https://doi.org/10.1016/0040-1951(92)90349-B

    Article  Google Scholar 

  80. Lysak, S.V., Terrestrial heat flow in zones of active faults in southern East Siberia, Russ. Geol. Geophys., 2002, vol. 43, no. 8, pp. 791–803.

    Google Scholar 

  81. Lysak, S.V. and Dorofeeva, R. P., Geothermal regime of the upper horizons of Earth’s crust in the southern regions of Eastern Siberia, Dokl. Earth Sci., 1997, vol. 352, no. 1, pp. 133–138.

    Google Scholar 

  82. Lysak, S.V. and Pisarsky, B.I., Heat flow estimation from helium isotopes in groundwater gases in the Baikal Rift Zone and its surroundings, J. Volcanol. Seismol., 1999, vol. 21, no. 3, pp. 345–359.

    Google Scholar 

  83. Ma, Z., Masters, G., Laske, G., and Pasyanos, M., A comprehensive dispersion model of surface wave phase and group velocity for the globe, Geophys. J. Int., 2014, vol. 199, pp. 113–135. https://doi.org/10.1093/gji/ggu246

    Article  Google Scholar 

  84. Masters, T.G. and Shearer, P.M., Seismic models of the Earth: elastic and anelastic, in Global Earth Physics: A Handbook of Physical Constants, Washington: AGU, 1995, pp. 88–103.

    Google Scholar 

  85. Mats, V.D., The sedimentary fill of the Baikal Basin: Implications for rifting age and geodynamics, Russ. Geol. Geophys., 2012, vol. 53, no. 9, pp. 936–954.

    Article  Google Scholar 

  86. Medhus, A.B., Balling, N., Jacobsen, B.H., Weidle, C., England, R.W., Kind, R., Thybo, H., and Voss, P., Upper-mantle structure beneath the Southern Scandes Mountains and the Northern Tornquist Zone revealed by P-wave traveltime tomography, Geophys. J. Int., 2012, vol. 189, pp. 1315–1334. https://doi.org/10.1111/j.1365-246X.2012.05449.x

    Article  Google Scholar 

  87. Meissner, R., Mooney, W.D., and Artemieva, I., Seismic anisotropy and mantle creep in young orogens, Geophys. J. Int., 2002, vol. 149, pp. 1–14. https://doi.org/10.1046/j.1365-246X.2002.01628.x

    Article  Google Scholar 

  88. Melnikova, V.I. and Gilyova, N.A., Relationship between seismicity in the northern Pribaikalye and the block structure of the crust, Dokl. Earth Sci., 2017, vol. 473, no. 2, pp. 386–389.

    Article  Google Scholar 

  89. Mel’nikova, V.I., Gilyova, N.A., Masal’skii, O.K., Radziminovich, Ya.B., and Radziminovich, N.A., On generation conditions of strong earthquakes in southern Baikal, Dokl. Earth Sci., 2009a, vol. 429, no. 2, pp. 1483–1487.

    Article  Google Scholar 

  90. Mel’nikova, V.I., Gileva, N.A., Radziminovich, N.A., Masal’skii, O.K., and Chechel’nitskii, V.V., Seismicity of the Baikal rift zone for the digital recording period of earthquake observation (2001–2006), Seism. Instrum., 2009b, vol. 46, no. 2, pp. 193–206.

    Article  Google Scholar 

  91. Mel’nikova, V.I., Gileva, N.A., Imaev, V.S., Radziminovich, Ya.B., and Tubanov, Ts.A., Features of seismic activation of the Middle Baikal region, 2008–2011, Dokl. Earth Sci., 2013a, vol. 453, no. 6, pp. 1282–1287.

    Article  Google Scholar 

  92. Melnikova, V.I., Gileva, N.A., Arefyev, S.S., Bykova, V.V., and Seredkina, A.I., The August 27, 2008, M w = 6.3 Kultuk earthquake (South Baikal): The stress-strain state of the source area from the aftershock data, Izv. Phys. Solid Earth, 2013b, vol. 49, no. 4, pp. 563–576. https://doi.org/10.7868/S0002333713040078

    Article  Google Scholar 

  93. Mel’nikova, V.I., Seredkina, A.I., and Gileva N.A., Spatio-temporal patterns of the development of strong seismic activations (1999-2007) in the northern Baikal area, Russ. Geol. Geophys., 2020, vol. 61, no. 1, pp. 119–134. https://doi.org/10.15372/gig2019103

    Article  Google Scholar 

  94. Mishen’kin, B.P., Mishen’kina, Z.R., Petrik, G.V., Shelud’ko, I.F., Mandel’baum, M.M., Seleznev, V.S., and Solov’ev, V.M., Deep seismic sounding of the Earth’s crust and upper mantle in the Baikal Rift Zone, Izv. Phys. Solid Earth, 1999, vol. 35, nos. 7–8, pp. 594–611.

    Google Scholar 

  95. Molnar, P. and Tapponnier, P., Cenozoic tectonics of Asia: Effects of a continental collision, Science, 1975, vol. 189, pp. 419–426. https://doi.org/10.1126/science.189.4201.419

    Article  Google Scholar 

  96. Montagner, J.-P., Upper mantle low anisotropy channels below the Pacific plate, Earth Planet. Sci. Lett., 2002, vol. 202, pp. 263–274. https://doi.org/10.1016/S0012-821X(02)00791-4

    Article  Google Scholar 

  97. Montagner, J.-P., Griot, D.A., and Lave, J., How to relate body wave and surface wave anisotropies?, J. Geophys. Res., 2000, vol. 105, no. B8, pp. 19015–19027. https://doi.org/10.1029/2000JB900015

    Article  Google Scholar 

  98. Mordvinova, V.V. and Artemyev, A.A., The three-dimensional shear velocity structure of lithosphere in the southern Baikal rift system and its surroundings, Russ. Geol. Geophys., 2010, vol. 51, no. 6, pp. 694–707.

    Article  Google Scholar 

  99. Mordvinova, V.V., Deschamps, A., Dugarmaa, T., Deverchére, J., Ulziibat, M., Sankov, V.A., Artem’ev, A.A., and Perrot, J., Velocity structure of the lithosphere on the 2003 Mongolian-Baikal transect from SV waves, Izv. Phys. Solid Earth, 2007, vol. 43, no. 2, pp. 119–129.

    Article  Google Scholar 

  100. Mordvinova, V.V., Kobelev, M.M., Treusov, A.V., Khritova, M.A., Trynkova, D.S., Kobeleva, E.A., and Lukhneva, O.F., Deep structure of the Siberian platform—Central Asian mobile belt transition zone from teleseismic data, Geodinam. Tektonofiz., 2016, vol. 7, no. 1, pp. 85–103. https://doi.org/10.5800/GT-2016-7-1-0198

    Article  Google Scholar 

  101. Mordvinova, V.V., Kobelev, M.M., Khritova, M.A., Turutanov, E.Kh., Kobeleva, E.A., Trynkova, D.S., and Tsydypova, L.R., The deep velocity structure of the southern margin of the Siberian craton with respect to Baikal rifting, Dokl. Earth Sci., 2019, vol. 484, no. 1, pp. 66–70.

    Article  Google Scholar 

  102. Moroz, Yu.F. and Moroz, T.A., Deep geoelectric section of the Baikal Rift, Vestn. KRAUNTs, Nauki Zemle, 2012, no. 2 (20), pp. 114–126.

  103. Moroz, Yu.F., Moroz, T.A., and Buglova, S.G., Vertical and horizontal components of the lake Baikal electrotelluric field and their relation to the electric conductivity, Izv. Phys. Solid Earth, 2008, vol. 44, no. 3, pp. 239–248.

    Article  Google Scholar 

  104. Morozova, G.M., Dashevskii, Yu.A., Nevedrova, N.N., and Grekhov, I.O., Deep distribution of electrical conductivity and stress field in the Earth’s crust of the Baikal prognostic polygon, Geol. Geofiz., 1999, vol. 40, no. 3, pp. 332–343.

    Google Scholar 

  105. Nielsen, C. and Thybo, H., Lower crustal intrusions beneath the Southern Baikal Rift Zone: evidence from full-waveform modelling of wide-angle seismic data, Tectonophysics, 2009a, vol. 470, pp. 298–318. https://doi.org/10.1016/j.tecto.2009.01.023

    Article  Google Scholar 

  106. Nielsen, C. and Thybo, H., No Moho uplift below the Baikal Rift Zone: Evidence from a seismic refraction profile across southern Lake Baikal, J. Geophys. Res., 2009b, vol. 114, no. B8, Paper ID B08306. https://doi.org/10.1029/2008JB005828

  107. Novoselova, M.R., Magnetic anomalies of the Baikal rift zone and adjacent areas, Tectonophysics, 1978, vol. 45, pp. 95–100. https://doi.org/10.1016/0040-1951(78)90227-5

    Article  Google Scholar 

  108. Pandey, S., Yuan, X., Debayle, E., Priestley, K., Kind, R., Tilmann, F., and Li, X., A 3D shear-wave velocity model of the upper mantle beneath China and the surrounding areas, Tectonophysics, 2014, vol. 633, pp. 193–210. https://doi.org/10.1016/j.tecto.2014.07.011

    Article  Google Scholar 

  109. Pankratov, O.V., Kuvshinov, A.V., Avdeev, D.B., Shneyer, V.S., and Trofimov, I.I., Ez-response as a monitor of a Baikal rift fault electrical resistivity: 3D modeling studies, Ann. Geophys., 2004, vol. 47, no. 1, pp. 151–156.

    Google Scholar 

  110. Pavlenkova, N.I., Long-range profile data on the upper-mantle structure in the Siberian Platform, Russ. Geol. Geophys., 2006, vol. 47, no. 5, pp. 626–641.

    Google Scholar 

  111. Pavlenkova, G.A. and Pavlenkova, N.I., Upper mantle structure of the Northern Eurasia from peaceful nuclear explosion data, Tectonophysics, 2006, vol. 416, pp. 33–52. https://doi.org/10.1016/j.tecto.2005.11.010

    Article  Google Scholar 

  112. Petit, C. and Déverchère, J., Structure and evolution of the Baikal rift: a synthesis, Geochem. Geophys. Geosyst., 2006, vol. 7, Paper ID Q11016. https://doi.org/10.1029/2006GC001265

  113. Petit, C., Koulakov, I., and Deverchère, J., Velocity structure around the Baikal rift zone from teleseismic and local earthquake traveltimes and geodynamics implications, Tectonophysics, 1998, vol. 296, pp. 125–144. https://doi.org/10.1016/S0040-1951(98)00140-1

    Article  Google Scholar 

  114. Pis’mennyi, B.M., Alakshin, A.M., Pospeev, A.V., and Mishen’kin, B.P., Geologiya i seismichnost’ zony BAM. Glubinnoe stroenie (Geology and Seismicity of the BAM Zone. Deep Structure), Novosibirsk: Nauka. 1984.

  115. Popov, A.M., A deep geophysical study in the Baikal region, Pure Appl. Geophys., 1990, vol. 134, pp. 575–587.

    Article  Google Scholar 

  116. Popov, A.M., Baduev, A.B., Amar, A., and Gunchin-Ish, A., Magnetotelluric research in Mongolia, in Glubinnoe stroenie i geodinamika Mongolo-Sibirskogo regiona (Deep Structure and Geodynamics of the Mongol-Siberian Region), Novosibirsk: Nauka, 1995, pp. 87–99.

  117. Pospeev, A.V., The velocity structure of the upper mantle and regional deep thermodynamics of the Baikal Rift Zone, Geodinam. Tektonofiz., 2012, vol. 3, no. 4, pp. 377–383. https://doi.org/10.5800/GT-2012-3-4-0080

    Article  Google Scholar 

  118. Poupoint, M., Anandakrishnan, S., Ammon, C.J., and Alley, R.B., Lithospheric structure of Greenland from ambient noise and earthquake surface wave tomography, J. Geophys. Res., 2018, vol. 123, pp. 7850–7876. https://doi.org/10.1029/2018JB015490

    Article  Google Scholar 

  119. Priestley, K. and Debayle, E., Seismic evidence for a moderately thick lithosphere beneath the Siberian Platform, Geophys. Res. Lett., 2003, vol. 30, no. 3, Paper ID 1118. https://doi.org/10.1029/2002GL015931

  120. Priestley, K., Debayle, E., McKenzie, D., and Pilidou, S., Upper mantle structure of eastern Asia from multimode surface waveform tomography, J. Geophys. Res., 2006, vol. 111, Paper ID B10304. https://doi.org/10.1029/2005JB004082

  121. Radziminovich, N.A., Gileva, N.A., Melnikova, V.I., and Ochkovskaya, M.G., Seiemicity of the Baikal rift system from regional network observations, J. Asian Earth Sci., 2013, vol. 62, pp. 146–161. https://doi.org/10.1016/j.jseaes.2012.10.029

    Article  Google Scholar 

  122. Rasskazov, S.V., Magmatizm Baikal’skoi riftovoi sistemy (Magmatism of the Baikal Rift System), Novosibirsk: Nauka, 1993.

  123. Ravat, D., Pignatelli, A., Nicolosi, I., and Chiappini, M., A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data, Geophys. J. Int., 2007, vol. 169, pp. 421–434. https://doi.org/10.1111/j.1365-246X.2007.03305.x

    Article  Google Scholar 

  124. Ritsema, J., Deuss, A., van Heijst, H., and Woodhouse, J., S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements, Geophys. J. Int., 2011, vol. 184, no. 3, pp. 1223–1236. https://doi.org/10.1111/j.1365-246X.2010.04884.x

    Article  Google Scholar 

  125. Ritzwoller, M.H. and Levshin, A.L., Eurasian surface wave tomography: group velocities, J. Geophys. Res., 1998, vol. 103, no. B3, pp. 4839–4878. https://doi.org/10.1029/97JB02622

    Article  Google Scholar 

  126. Rogozhina, V.A. and Kozhevnikov, V.M., Oblast’ anomal’noi mantii pod Baikal’skim riftom (Anomalous Mantle Area under the Baikal Rift), Novosibirsk: Nauka, 1979.

  127. Savage, M.K., Silver, P.G., and Meyer, R.P., Observations of teleseismic shear-wave splitting in the basin range from portable and permanent stations, Geophys. Res. Lett., 1990, vol. 17, pp. 21–24. https://doi.org/10.1029/GL017i001p00021

    Article  Google Scholar 

  128. Schaeffer, A.J. and Lebedev, S., Global shear-speed structure of the upper mantle and transition zone, Geophys. J. Int., 2013, vol. 194, pp. 417–449. https://doi.org/10.1093/gji/ggt095

    Article  Google Scholar 

  129. Scholz, C.A., Klitgord, K.D., Hutchinson, D.R., ten Brink, U.S., Zonenshain, L.P., Golmshtok, A.Y., and Moore, T.C., Results of 1992 seismic reflection experiment in Lake Baikal, Eos, Trans. Am. Geophys. Union, 1993, vol. 74, no. 41, pp. 465–470. https://doi.org/10.1029/93EO00546

    Article  Google Scholar 

  130. Seredkina, A.I. and Filippov, S.V., Parameters of the magnetically active layer of the lithosphere of the Baikal Rift Zone, Mater. IV Vseross. simp. s uchastiem inostr. uch., posvyashchennogo 90-letiyu so dnya rozhdeniya akad. N.A. Logacheva: Riftogenez, orogenez, soputstvuyushchie protsessy (Proc. IV All-Russ. Symp. with Int. Participation on 90th Anniv. of the Birth of Acad. N.A. Logachev: Riftogenesis, Orogenesis and Associated Processes), Irkutsk, 2019, Irkutsk: IZK SO RAN, 2019a, pp. 186–188.

  131. Seredkina, A.I. and Filippov, S.V., Parameters of the magnetoactive layer of the lithosphere for the Siberian Platform—Transbaikalia profile based on WDMAM 2.0 model data, Geomagn. Aeron., 2019b, vol. 59, no. 6, pp. 761–769. https://doi.org/10.1134/S0016794019060099

    Article  Google Scholar 

  132. Seredkina, A.I. and Melnikova, V.I., Seismotectonic crustal strains of the Mongol-Baikal seismic belt from seismological data, in Moment Tensor Solutions: A Useful Tool for Seismotectonics, D’Amico, S., Ed., Springer Natural Hazards Series, Cham: Springer, 2018, pp. 497–517. https://doi.org/10.1007/978-3-319-77359-9_22

  133. Seredkina, A.I. and Solovei, O.A., Anisotropic properties of the upper mantle in Central Asia according to the group velocity dispersion curves for Rayleigh and Love waves, Geodinam. Tektonofiz., 2018, vol. 9, no. 2, pp. 427–437. https://doi.org/10.5800/GT-2018-9-2-0354

    Article  Google Scholar 

  134. Seredkina, A.I., Melnikova, V.I., Gileva, N.A., and Radziminovich, Y.B., The M w = 4.3 January 17, 2014, earthquake: very rare seismic event on the Siberian platform, J. Seismol., 2015, vol. 19, pp. 685–694. https://doi.org/10.1007/s10950-015-9487-y

    Article  Google Scholar 

  135. Seredkina, A.I., Kozhevnikov, V.M., Melnikova, V.I., and Solovey, O.A., Seismicity and S-wave velocity structure of the crust and the upper mantle in the Baikal rift and adjacent regions, Phys. Earth Planet. Inter., 2016, vol. 261, pp. 152–160. https://doi.org/10.1016/j.pepi.2016.10.011

    Article  Google Scholar 

  136. Seredkina, A.I., Kozhevnikov, V.M., and Solovei, O.A., Dispersion of group velocities of Rayleigh and Love waves and anisotropic properties of the Asian continent, Russ. Geol. Geophys., 2018, vol. 59, no. 4, pp. 448–458. https://doi.org/10.15372/GiG20180410

    Article  Google Scholar 

  137. Seredkina, A.I., Melnikova, V.I., Radziminovich, Y.B., and Gileva, N.A., Seismicity of the Erguna region (Northeastern China): evidence for local stress redistribution, Bull. Seismol. Soc. Am., 2020, vol. 110, pp. 803–815. https://doi.org/10.1785/0120190182

    Article  Google Scholar 

  138. Shapiro, N.M. and Ritzwoller, M.H., Monte-Carlo inversion for a global shear velocity model for the crust and upper mantle, Geophys. J. Int., 2002, vol. 151, pp. 88–105. https://doi.org/10.1046/j.1365-246X.2002.01742.x

    Article  Google Scholar 

  139. Shen, W., Ritzwoller, M.H., Kang, D., Kim, Y., Lin, F.-C., Ning, J., Wang, W., Zheng, Y., and Zhou, L., A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion, Geophys. J. Int., 2016, vol. 206, no. 2, pp. 954–979. https://doi.org/10.1093/gji/ggw175

    Article  Google Scholar 

  140. Song, Y., Krylov, S.V., Yang, B., Cai, L., Dong, S., Liang, T., Li, J., Xu X., Mishenkina, Z.R., Petrik, G.V., Shelud’ko, I.F., Seleznev, V.S., and Solov’ev, V.M., Deep seismic sounding of the lithosphere on the Baikal–Northeastern China international transect, Russ. Geol. Geophys., 1996, vol. 37, no. 2, pp. 1–13.

    Google Scholar 

  141. Suvorov, V.D., Mishenkina, Z.M., Petrik, G.V., Sheludko, I.F., Seleznev, V.S., and Solovyov, V.M., Structure of the crust in the Baikal rift zone and adjacent areas from Deep Seismic Sounding data, Tectonophysics, 2002, vol. 351, pp. 61–74.https://doi.org/10.1016/S0040-1951(02)00125-7

    Article  Google Scholar 

  142. Tanaka, A., Global centroid distribution of magnetized layer from World Digital Magnetic Anomaly Map, Tectonics, 2017, vol. 36, pp. 3248–3253. https://doi.org/10.1002/2017TC004770

    Article  Google Scholar 

  143. Tapponier, P. and Molnar, P., Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia, and Baikal regions, J. Geophys. Res., 1979, vol. 84, no. B7, pp. 3425–3459. https://doi.org/10.1029/JB084iB07p03425

    Article  Google Scholar 

  144. ten Brink, U.S. and Taylor, M.H., Crustal structure of central Lake Baikal: Insight into intracontinental rifting, J. Geophys. Res.: Solid Earth, 2002, vol. 107, no. B7, pp. ETG 2-1–ETG 2-15. https://doi.org/10.1029/2001JB000300

  145. Tiberi, C., Diament, M., Déverchère, J., Petit-Mariani, C., Mikhailov, V., Tikhotsky, S., and Achauer, U., Deep structure of the Baikal rift zone revealed by joint inversion of gravity and seismology, J. Geophys. Res.: Solid Earth, 2003, vol. 108, no. B3, Paper ID 2133. https://doi.org/10.1029/2002JB001880

  146. Trampert, J. and Woodhouse, J., Global anisotropic phase velocity maps for fundamental mode surface waves between 40 and 150 s, Geophys. J. Int., 2003, vol. 154, pp. 154–165. https://doi.org/10.1046/j.1365-246X.2003.01952.x

    Article  Google Scholar 

  147. Villasenor, A., Ritzwoller, M.H., Levshin, A.L., Barmin, M.P., Engdahl, E.R., Spakman, W., and Trampet, J., Shear velocity structure of Central Eurasia from inversion of surface wave velocities, Phys. Earth Planet. Inter., 2001, vol. 123, pp. 169–184. https://doi.org/10.1016/S0031-9201(00)00208-9

    Article  Google Scholar 

  148. Vinnik, L.P., Detection of waves converted from P to SV in the mantle, Phys. Earth Planet. Inter., 1977, vol. 15, pp. 39–45. https://doi.org/10.1016/0031-9201(77)90008-5

    Article  Google Scholar 

  149. Vinnik, L.P., Farra, V., and Romanowicz, B., Azimuthal anisotropy in the Earth from observations of SKS at Geoscope and NARS broadband stations, Bull. Seismol. Soc. Am., 1989, vol. 79, pp. 1542–1558.

    Google Scholar 

  150. Vinnik, L.P., Makayeva, L.I., Milev, A., and Usenko, A.Y., Global patterns of azimuthal anisotropy and deformations in the continental mantle, Geophys. J. Int., 1992, vol. 111, pp. 433–447. https://doi.org/10.1111/j.1365-246X.1992.tb02102.x

    Article  Google Scholar 

  151. Vinnik, L.P., Reigber, C., Aleshin, I.M., Kosarev, G.L., Kaban, M.K., Oreshin, S.I., and Roecker, S.W., Receiver function tomography of the central Tien Shan, Earth Planet. Sci. Lett., 2004, vol. 225, pp. 131–146. https://doi.org/10.1016/j.epsl.2004.05.039

    Article  Google Scholar 

  152. Vinnik, L.P., Oreshin, S.I., Tsydypova, L.R., Mordvinova, V.V., Kobelev, M.M., Khritova, M.A., and Tubanov, Ts.A., Crust and mantle of the Baikal Rift Zone from P- and S-wave receiver functions, Geodinam. Tektonofiz., 2017, vol. 8, no. 4, pp. 695–709. https://doi.org/10.5800/GT-2017-8-4-0313

    Article  Google Scholar 

  153. Yakovlev, A.V., Kulakov, I.Yu., and Tychkov, S.A., Moho depths and three-dimensional velocity structure of the crust and upper mantle beneath the Baikal region, from local tomography, Russ. Geol. Geophys., 2007, vol. 48, no. 2, pp. 204–220.

    Article  Google Scholar 

  154. Yanovskaya, T.B., Development of methods for solving problems of surface-wave tomography based on the Bakus-Hilbert method, in Vychislitel’naya seismologiya, vyp. 32 (Computational Seismology, vol. 32), Moscow: GEOS, 2000, pp. 11–26.

  155. Yanovskaya, T.B., Poverkhnostno-volnovaya tomografiya v seismologicheskikh issledovaniyakh (Surface-Wave Tomography in Seismological Research), St. Petersburg: Nauka, 2015.

  156. Yanovskaya, T.B. and Akchurin, K.R., Anisotropy of the upper mantle of the Asian continent according to the phase and group velocities of the Rayleigh and Love waves, Vopr. Geofiz., 2009, vol. 42, pp. 3–11.

    Google Scholar 

  157. Yanovskaya, T.B. and Kozhevnikov, V.M., 3D S-wave velocity pattern in the upper mantle beneath the continent of Asia from Rayleigh wave data, Phys. Earth Planet. Inter., 2003, vol. 138, pp. 263–278. https://doi.org/10.1016/S0031-9201(03)00154-7

    Article  Google Scholar 

  158. Yanovskaya, T.B. and Kozhevnikov, V.M., Upper mantle anisotropy beneath the Asian continent from group velocities of Rayleigh and Love waves, Geol. Geofiz., 2006, vol. 47, no. 5, pp. 622–629.

    Google Scholar 

  159. Yanovskaya, T.B., Kozhevnikov, V.M., Solovei, O.A., and Akchurin, K.R., Structure of the upper mantle in Asia from phase and group velocities of Rayleigh waves, Izv. Phys. Solid Earth, 2008, vol. 44, no. 8, pp. 622–630.

    Article  Google Scholar 

  160. Yanovskii, B.M., Zemnoi magnetizm (Terrestrial Magnetism), Leningrad: LGU, 1978.

  161. Yuan, K. and Beghein, C., Seismic anisotropy changes across upper mantle phase transitions, Earth Planet. Sci. Lett., 2013, vol. 374, pp. 132–144. https://doi.org/10.1016/j.epsl.2013.05.031

    Article  Google Scholar 

  162. Zhao, D., Seismic structure and origin of hotspots and mantle plumes, Earth Planet. Sci. Lett., 2001, vol. 192, pp. 251–265. https://doi.org/10.1016/S0012-821X(01)00465-4

    Article  Google Scholar 

  163. Zhao, D., Kanamori, H., Negishi, H., and Wiens, D., Tomography of the source area of the 1995 Kobe earthquake: Evidence for fluids at the hypocenter, Science, 1996, vol. 274, pp. 1891–1894. https://doi.org/10.1126/science.274.5294.1891

    Article  Google Scholar 

  164. Zhao, D., Ochi, F., Hasegawa, A., and Yamamoto, A., Evidence for the location and cause of large crustal earthquakes in Japan, J. Geophys. Res., 2000, vol. 105, no. B6, pp. 13579–13594. https://doi.org/10.1029/2000JB900026

    Article  Google Scholar 

  165. Zhao, D., Lei, J., Inoue, T., Yamada, A., and Gao, S.S., Deep structure and origin of the Baikal rift zone, Earth Planet. Sci. Lett., 2006, vol. 243, pp. 681–691. https://doi.org/10.1016/j.epsl.2006.01.033

    Article  Google Scholar 

  166. Zhou, Y., Nolet, G., Dahlen, F.A., and Laske, G., Global upper-mantle structure from finite-frequency surface-wave tomography, J. Geophys. Res., 2006, vol. 111, Paper ID B04304. https://doi.org/10.1029/2005JB003677

  167. Zonenshain, L.P. and Savostin, L.A., Vvedenie v geodinamiku (Introduction to Geodynamics), Moscow: Nedra, 1979.

  168. Zorin, Yu.A., The mechanism of formation of the Baikal Rift Zone in connection with the peculiarities of its deep structure, in Rol’ riftogeneza v geologicheskoi istorii Zemli (The Role of Rifting in the Geological History of the Earth), Novosibirsk: Nauka, Sib. Otd., 1977, pp. 36–47.

  169. Zorin, Yu.A. and Turutanov, E.Kh., Plumes and geodynamics of the Baikal Rift Zone, Russ. Geol. Geophys., 2005, vol. 46, no. 7, pp. 669–682.

    Google Scholar 

  170. Zorin, Yu.A. and Turutanov, E.Kh., Regional isostatic gravity anomalies and mantle plumes in southern East Siberia (Russia) and Central Mongolia, Russ. Geol. Geophys., 2004, vol. 45, no. 10, pp. 1248–1258.

    Google Scholar 

  171. Zorin, Yu.A., Mordvinova, V.V., Novoselova, M.R., and Turutanov, E.Kh., Density heterogeneity of the mantle under the Baikal Rift, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1986, no. 5, pp. 43–52.

  172. Zorin, Yu.A., Balk, T.V., Novoselova, M.R., and Turutanov, E.Kh., The thickness of the lithosphere under the Mongol-Siberian mountainous country and adjacent regions, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1988, no. 7, pp. 34–42.

  173. Zorin, Yu.A., Kozhevnikov, V.M., Novoselova, M.R., and Turutanov, E.Kh., Thickness of the lithosphere beneath the Baikal rift zone and adjacent regions, Tectonophysics, 1989, vol. 168, pp. 327–337. https://doi.org/10.1016/0040-1951(89)90226-6

    Article  Google Scholar 

  174. Zorin, Yu.A., Novoselova, M.R., Turutanov, E.Kh., and Kozhevnikov, V.M., Structure of the lithosphere of the Mongolian–Siberian Mountainous Province, J. Geodyn., 1990, vol. 11, pp. 327–342. https://doi.org/10.1016/0264-3707(90)90015-M

    Article  Google Scholar 

  175. Zorin, Yu.A., Mordvinova, V.V., Turutanov, E.Kh., Belichenko, B.G., Artemyev, A.A., Kosarev, G.L., and Gao, S.S., Low seismic velocity in the Earth’s crust beneath Eastern Siberia (Russia) and Central Mongolia: receiver function data and their possible geological implication, Tectonophysics, 2002, vol. 359, pp. 307–327. https://doi.org/10.1016/S0040-1951(02)00531-0

    Article  Google Scholar 

  176. Zorin, Y.A., Turutanov, E.Kh., Mordvinova, V.V., Kozhevnikov, V.M., Yanovskaya, T.B., and Treussov, A.V., The Baikal rift zone: the effect of mantle plumes on older structure, Tectonophysics, 2003, vol. 371, pp. 153–173. https://doi.org/10.1016/S0040-1951(03)00214-2

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am deeply grateful to Dr. V.I. Melnikova, Dr. Ya.B. Radzi-minovich (IEC SB RAS) and Dr. S.V. Filippov (IZMIRAN) for their helping in preparing the article for publication and discussions.

Funding

The work was supported by the Russian Foundation for Basic Research under project no. 19-15-50130.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Seredkina.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seredkina, A.I. The State of the Art in Studying the Deep Structure of the Earth’s Crust and Upper Mantle beneath the Baikal Rift from Seismological Data. Izv., Phys. Solid Earth 57, 180–202 (2021). https://doi.org/10.1134/S1069351321020117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351321020117

Keywords:

Navigation