Skip to main content
Log in

Paralleled DC–DC Converters Control Using Master–Slave Adaptive Fuzzy Backstepping Techniques

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

Balanced current sharing and output voltage control of paralleled DC–DC converter modules are essential requirements for enhanced reliability and power capacity. These control goals are challenging due to the load, supply voltage, line impedance uncertainties, inter-couplings of the converters, and open circuit faults. To achieve these goals, this paper proposes two novel adaptive fuzzy backstepping control methods for two sets of paralleled DC–DC converters. The proposed controllers are exercised in a master–slave architecture. First, a master–slave adaptive fuzzy backstepping controller is suggested for a set of paralleled buck converters to deal with matched and mismatched uncertainties, and to ensure balanced current sharing. To counteract uncertainties, as well as interactions among the converters, adaptive fuzzy estimators are employed. However, the suggested control strategy is not applicable to the paralleled boost converters due to their non-minimum-phase nature. Therefore, a novel master–slave adaptive fuzzy backstepping controller with a conventional proportional-integral reference current generator is proposed to encompass paralleled boost converters. Moreover, a simple fault-tolerant structure is suggested to detect the open circuit faults and re-share the inductor currents. The stability of the proposed controllers is guaranteed through the Lyapunov stability theorem. The proposed adaptive fuzzy backstepping control strategies offer good output voltage quality and current sharing, despite the uncertainties, inter-couplings, and open circuit faults. Comparative simulations are carried out on sets of three paralleled buck and boost converters to demonstrate the effectiveness and performance of the new control methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alvarez-RamirezEspinosa-P´erez JG, Noriega-Pineda D (2003) Current mode control of DC–DC power converters: a backstepping approach. Int J Robust Nonlin Control 13(5):421–442

    Article  MathSciNet  MATH  Google Scholar 

  • AlZawaideh A, Boiko I (2019) Analysis of a sliding mode boost converter under fluctuating input source voltage, using LPRS method. Control Eng Pract 92:104132

    Article  Google Scholar 

  • Ayoubi Y, Elsied M, Oukaour A, Chaoui H, Slamani Y, Gualous H (2016) Four-phase interleaved DC/DC boost converter interfaces forsuper-capacitors in electric vehicle application based on advanced sliding mode control design. Electr Power Syst Res 134:186–196

    Article  Google Scholar 

  • Barhoumi EM, Belgacem IB, Khiareddine A, Zghaibeh M, Tlili I (2018) A neural network-based four phases interleaved boost converter for fuel cell system applications. Energies 11:1–18

    Article  Google Scholar 

  • Bento F, Marques Cardoso AJ (2017) Open-circuit fault diagnosis in interleaved DC–DC Boost converters and reconfiguration strategy. IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)

  • Cheng Y, Yang C, Wen G, He Y (2017) Adaptive saturated finite-time control algorithm for buck-type DC–DC converter systems. Int J Adap Control Signal Process 13(10):1428–1436

    Article  MathSciNet  MATH  Google Scholar 

  • Chiu CS, Shen CT (2012) Finite-time control of DC–DC buck converters via integral terminal sliding modes. Int J Electron 99(5):643–655

    Article  Google Scholar 

  • Delghavi MB, Yazdani A (2019) Sliding-mode control of AC voltages and currents of dispatchable distributed energy resources in master-slave-organized inverter-based microgrids. IEEE Trans Smart Grid 10(1):980–991

    Article  Google Scholar 

  • Ding S, Zheng WX, Sun J, Wang J (2018) Second-order sliding mode controller design and its implementation for buck converters. IEEE Annual IEEE Trans Ind Inform 14(5):1990–2000

    Article  Google Scholar 

  • Donoso-Garcia PF, Cortizo PC, Menezes BR, Severo Mendes MA (1998) Sliding-mode control for current distribution in parallel-connected DC–DC converters. IEE Proc-Electr Power Appl 145(4):333–338

    Article  Google Scholar 

  • Emadi A, Ehsani M. Negative impedance stabilizing controls for PWM DC–DC converters using feedback linearization techniques. In 35th Intersociety Energy Conversion Engineering Conference and Exhibit 2000; 613–620.

  • Fadil HE, Giri F. Backstepping based control of PWM DC–DC boost power converters. IEEE International Symposium on Industrial Electronics 2007; 4–7 June.

  • Fadil HE, Giri F, Guerrero JM (2013) Adaptive sliding mode control of interleaved parallel boost converter for fuel cell energy generation system. Mathe Comput Simul 91:193–210

  • Gehan O, Pigeon E, Menard T, Pouliquen M, Gualous H, Slamani Y, Tala-Ighil B (2017) A Nonlinear state feedback for DC/DC boost converters. J Dyn Syst Meas Contr 139:1–10

    Article  Google Scholar 

  • Ginoya D, Shendge PD, Phadke SB (2014) Sliding mode control for mismatched uncertain systems using an extended disturbance observer. IEEE Trans Ind Electr 61(4):1983–1992

    Article  Google Scholar 

  • Hsu CF, Lin CM, Lee TT (2006) Wavelet adaptive backstepping control for a class of nonlinear systems. IEEE Trans on Neural Networks 17(5):1175–1183

    Article  Google Scholar 

  • Karamanakos P, Geyer T, Manias S (2014) Direct voltage control of dcdc boost converters using enumeration-based model predictive control. IEEE Trans Power Electron 29(2):968–978

    Article  Google Scholar 

  • Khalil HK (2002) Nonlinear systems, 3rd edn. Prentice Hall, Upper Saddle River, NJ

  • Komurcugil H (2012a) Adaptive terminal sliding-mode control strategy for DC–DC buck converters. ISA Trans 51:673–681

    Article  Google Scholar 

  • Komurcugil H (2012b) Non-singular terminal sliding-mode control of DC–DC buck converters. Control Eng Pract 21(3):321–332

    Article  Google Scholar 

  • Kreyszig E (2007) Advanced engineering mathematics. John Wiley, New York

    MATH  Google Scholar 

  • Langarica-Cordoba D, Leyva-Ramos J, Diaz-Saldierna LH, Ramirez-Rivera VM (2017) Non-linear current-mode control for boost power converters: a dynamic backstepping approach. IET Control Theory Appl 11(14):2261–2269

    Article  MathSciNet  Google Scholar 

  • Lee SW, Cho BH (2016) Master-Slave based hierarchical control for a small power DC-distributed microgrid system with a storage device. Energies 9:1–14

    Article  Google Scholar 

  • Lee SW, Cho BH (2018) A novel quasi-master-slave control frame for PV-storage independent microgrid. Electr Power Energy Syst 97:262–274

    Article  Google Scholar 

  • Lilly JH (2010) Fuzzy control and identification. Wiley, Hoboken

    Book  MATH  Google Scholar 

  • Linares-Flores J, Hernández Méndez A, García-Rodríguez C, Sira-Ramírez H (2004) Robust nonlinear adaptive control of a “boost” converter via algebraic parameter identification. IEEE Trans Ind Electr 61(8):4105–4114

    Article  Google Scholar 

  • López M, García de Vicuña L, Castilla M, Gayà P, López O (2004) Current distribution control design for paralleled DC/DC converters using sliding-mode control. IEEE Trans Ind Electr 51(2):419–428

    Article  Google Scholar 

  • Ma L, Zhang Y, Yang X, Ding S, Dong L (2018) Quasi-continuous second-order sliding mode control of buck converter. IEEE Access 6:17859–17867

    Article  Google Scholar 

  • Marquez H (2003) Nonlinear control systems. Wiley, Amsterdam

    MATH  Google Scholar 

  • Mazumder SK, Nayfeh AH, Borojevic D (2002) Robust control of parallel DC–DC buck converters by combining integral-variable-structure and multiple-sliding-surface control schemes. IEEE Trans Power Electron 17(3):428–437

    Article  Google Scholar 

  • Mendez AH, Flores JL, Sira-Ramirez H, Guerrero-Castellanos JF, Mino-Aguilar G (2017) A backstepping approach to decentralized active disturbance rejection control of interacting boost converters. IEEE Trans Ind Appl 53(4):4063–4072

    Article  Google Scholar 

  • Mortezaei A, Simões MG, Savaghebi M, Guerrero JM, Al DA (2018) Cooperative control of multi-master-slave islanded microgrid with power quality enhancement based on conservative power theory. IEEE Trans Smart Grid 9(4):2964–2975

    Article  Google Scholar 

  • Naik BB, Mehta AJ (2017) Sliding mode controller with modified sliding function for DC–DC buck converter. ISA Trans 70:279–284

    Article  Google Scholar 

  • Nizami TK, Chakravarty A, Mahanta C (2018) Analysis and experimental investigation into a finite time current observer based adaptive backstepping control of buck converters. J Franklin Inst 355(12):4996–5017

    Article  MathSciNet  MATH  Google Scholar 

  • Peng J, Fan B, Duan J, Yang Q, Liu W (2019) Adaptive decentralized output-constrained control of single-bus DC microgrids. IEEE/CAA J Automatica Sinica 6(2):424–432

    Article  MathSciNet  Google Scholar 

  • Qi R, Tao G, Jiang B (2019) Fuzzy system identification and adaptive control. Springer communications and control engineering. Springer, Cham

    Google Scholar 

  • Ramos R, Biel D, Guinjoan F, Fossas E (2001) Master-slave sliding-mode control design in parallel-connected inverters. Automatika 42:37–44

    Google Scholar 

  • Salimi M, Soltani J, Markadeh GA, Abjadi NR (2013) Indirect output voltage regulation of DC–DC buck/boost converter operating in continuous and discontinuous conduction modes using adaptive backstepping approach. IET Power Electr 6(4):732–741

    Article  Google Scholar 

  • Shoja-Majidabad S (2016) Robust rejection of matched/unmatched perturbations from fractional-order nonlinear systems. J Control Autom Electr Syst 27(5):485–496

    Article  Google Scholar 

  • Shtessel YB, Zinober ASI, Shkolnikovc IA (2003) Sliding mode control of boost and buck-boost power converters using method of stable system center. Automatica 39:1061–1067

    Article  MATH  Google Scholar 

  • Shtessel Y, Edwards C, Fridman L, Levant A (2014) Sliding mode control and observation. New York, Springer

  • Singh RP, Khambadkone AM (2010) Current sharing and sensing in N-paralleled converters using single current sensor. IEEE Trans Ind Appl 46(3):1212–1219

    Article  Google Scholar 

  • Tan SC, Lai YM, Tse CK (2008) General design issue of sliding mode controllers in DC–DC converters. IEEE Trans Power Electron 55(3):1160–1174

    Google Scholar 

  • Utkin V (2013) Sliding mode control of DC/DC converters. J Franklin Inst 350(3):2146–2165

    Article  MathSciNet  MATH  Google Scholar 

  • Utkin V, Guldner J, Shi J (2009) Sliding mode control in electro-mechanical systems. CRC Press Taylor & Francis Group, Florida

    Google Scholar 

  • Verma V, Talpur GG. Decentralized master-slave operation of microgrid using current controlled distributed generation sources. IEEE International Conference on Power Electronics, Drives and Energy Systems 2012; 16–19 Dec.

  • Wai RJ, Yang ZW (2008) Adaptive fuzzy neural network control design via a T–S fuzzy model for a robot manipulator including actuator dynamics. IEEE Trans Syst Man Cybern Part B 38:1326–1346

    Article  Google Scholar 

  • Wang L.X. Fuzzy systems are universal approximators, in: Proc. of the IEEE Int Conf Fuzzy Syst, San Diego, 1992, pp. 1163–1169.

  • Wang LX (1997) A course in fuzzy system and control. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Wang F, Hua C, Zong Q (2015a) Attitude control of reusable launch vehicle in reentry phase with input constraint via robust adaptive backstepping control. Int J Adaptive Control Signal Process 29(10):1308–1327

    Article  MathSciNet  MATH  Google Scholar 

  • Wang J, Li S, Yang J, Wu B, Li Q (2015b) Extended state observer-based sliding mode control for PWM-based DC–DC buck power converter systems with mismatched disturbances. IET Control Theory Appl 9(4):579–586

    Article  MathSciNet  Google Scholar 

  • Wang Z, Li S, Wang J, Li Q (2017) Robust control for disturbed buck converters based on two GPI observers. Control Eng Pract 66:13–22

    Article  Google Scholar 

  • Wang H, Han M, Han R, Guerrero JM, Vasquez JC (2018) A decentralized current-sharing controller endows fast transient response to parallel DC–DC converters. IEEE Trans Power Electron 33(5):4362–4372

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the deputy of research of the University of Bonab for financial and technical support.

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and publication of this article: This work was supported by the University of Bonab (grant number 98/I/ER/935).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajjad Shoja-Majidabad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoja-Majidabad, S., Yazdani, A. Paralleled DC–DC Converters Control Using Master–Slave Adaptive Fuzzy Backstepping Techniques. Iran J Sci Technol Trans Electr Eng 45, 1343–1367 (2021). https://doi.org/10.1007/s40998-021-00418-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-021-00418-9

Keywords

Navigation