Skip to main content
Log in

Characteristic of SiC Slurry in Ultra Precision Lapping of Sapphire Substrates

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

A method is proposed in this paper to prepare a SiC slurry with SiC particles selected by an ultrasonic-assisted elutriation method to reduce substrate surface damage caused by abrasive particles during lapping. Sapphire substrate lapping experiments were carried out using the prepared SiC slurry, and the lapping performance of the slurry was analyzed. The experimental results show that the SiC particle size is a factor that directly affects the material removal rate and surface roughness Ra, of sapphire substrates. When a SiC slurry with a particle size of 630 nm was used, the material removal rate was 508 nm/h, and the surface roughness Ra was 1.9 nm; increasing the slurry concentration and the platen rotating speed can improve the material removal rate. In addition, the agglomeration of SiC particles in the slurry depends on the pH of the slurry. Efficient precision lapping of sapphire substrates can be achieved by selecting appropriately sized SiC particles and by adjusting the slurry pH to control the agglomeration and dispersion of SiC particlesto further reduce the scratches on the substrate surface during the lapping process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aida, H., Doi, T., Takeda, H., Katakura, H., Kim, S. W., et al. (2012). Ultraprecision CMP for sapphire, GaN and SiC for advanced optoelectronics materials. Current Applied Physics, 12, 41–46.

    Article  Google Scholar 

  2. Millán, J. (2007). Wide band gap power semiconductor devices. IET Circuits Devices & Systems, 1(5), 372–379.

    Article  Google Scholar 

  3. Li, M., Zhou, X. B., Yang, H., Du, S. Y., & Huang, Q. (2018). The critical issues of SiC materials for future nuclear systems. ScriptaMaterialia, 143(15), 149–153.

    Google Scholar 

  4. Wang, C. W., Kurokawa, S., Doi, T., Yuan, J. L., Fan, L., Mitsuhara, M., et al. (2018). SEM, AFM and TEM studies for repeated irradiation effect of femtosecond laser on 4H-SiC surface morphology at near threshold fluence. ECS Journal of Solid State Science and Technology, 7(2), 29–34.

    Article  Google Scholar 

  5. Abrego Serrano, P. A., Kim, M., Kim, D. R., et al. (2020). Spherical mirror and surface patterning on silicon carbide (SiC) by material removal rate enhancement using CO2 laser assisted polishing. International Journal of Precision Engineering and Manufacturing, 21, 775–785.

    Article  Google Scholar 

  6. Aida, H., Kim, S. W., Suzuki, T., Koyama, K., Aota, N., Doi, T., & Yamazaki, T. (2014). Surface planarization of GaN on sapphire template by chemical mechanical polishing for subsequent GaN homoepitaxy. ECS Journal of Solid State Science and Technology, 3(5), 163–168.

    Article  Google Scholar 

  7. Roccaforte, F., Fiorenza, P., Greco, G., LoNigro, R., Giannazzo, F., Iucolano, F., & Saggio, M. (2018). Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices. Microelectronic Engineering, 187–188, 66–77.

    Article  Google Scholar 

  8. Basim, G. B., Adler, J. J., Mahajan, U., Singh, R. K., & Moudgil, B. M. (2000). Effect of particle size of chemical mechanical polishing slurries for enhanced polishing with minimal defects. Journal Electrochemical Society, 147(9), 3523–3528.

    Article  Google Scholar 

  9. Lyu, B. H., Shao, Q., Hang, W., et al. (2020). Shear thickening polishing of black lithium tantalite substrate. International Journal of Precision Engineering and Manufacturing, 21, 1663–1675.

    Article  Google Scholar 

  10. Zhou, Y., Pan, G., Shi, X., Zhang, S., Gong, H., & Luo, G. (2015). Effects of ultra-smooth surface atomic step morphology on chemical mechanical polishing (CMP) performances of sapphire and SiC wafers. Tribology International, 87, 145–150.

    Article  Google Scholar 

  11. Jackson, C. L., & Mosley, D. W. (2019). Model friction studies of chemical mechanical planarization using a pin-on-disk tribometer. Tribology Letters, 67(3), 81–96.

    Article  Google Scholar 

  12. Shi, X. L., Pan, G. S., Zhou, Y., et al. (2014). Characterization of colloidal silica abrasives with different sizes and their chemical–mechanical polishing performance on 4H-SiC (0001). Applied Surface Science, 307, 414–427.

    Article  Google Scholar 

  13. Chen, G. M., Ni, Z. F., Xu, L. J., et al. (2015). Performance of colloidal silica and ceria based slurries on CMP of Si-face 6H-SiC substrates. Applied Surface Science, 359, 664–668.

    Article  Google Scholar 

  14. Zhang, Z., Du, Y., Wang, B., Wang, Z., Kang, R., & Guo, D. (2017). Nanoscale wear layers on silicon wafers induced by mechanical chemical grinding. Tribology Letters, 65(4), 132–145.

    Article  Google Scholar 

  15. Jia, G., & Zhang, B. L. (2018). Influence of SiC surface defects on materials removal in atmospheric pressure plasma polishing. Computational Materials Science, 146, 26–35.

    Article  Google Scholar 

  16. Kurokawa, S., Doi, T. K., Wang, C. W., Sano, Y., Aida, H., et al. (2014). Approach to high efficient CMP for power device substrates. ECS Transactions, 60(1), 641–646.

    Article  Google Scholar 

  17. Yin, T., Doi, T., Kurokawa, S., Zhou, Z. Z., & Feng, K. P. (2018). Polishing characteristics of MnO2 polishing slurry on the Si-face of SiC wafer. International Journal of Precision Engineering and Manufacturing, 19, 1773–1780.

    Article  Google Scholar 

  18. Tanaka, T., Takizawa, M., & Hata, A. (2018). Verification of the effectiveness of UV-polishing for 4H-SiC wafer using photocatalyst and cathilon. International Journal of Automation Technology, 12(2), 160–169.

    Article  Google Scholar 

  19. Ohnishi, O., Doi, T., Kurokawa, S., Yamazaki, T., Uneda, M., et al. (2012). Effects of atmosphere and ultraviolet light irradiation on chemical mechanical polishing characteristics of SiC wafers. Japanese Journal of Applied Physics, 51, 05EF05-1-2.

  20. Wang, J., Wang, T., Pan, G., & Lu, X. (2016). Effects of catalyst concentration and ultraviolet intensity on chemical mechanical polishing of GaN. Applied Surface Science, 378, 130–135.

    Article  Google Scholar 

  21. Aida, H., Takeda, H., Kim, S. W., Aota, N., et al. (2014). Evaluation of subsurface damage in GaN substrate induced by mechanical polishing with diamond abrasives. Applied Surface Science, 292, 531–536.

    Article  Google Scholar 

  22. Doi, T. K., Seshimo, K., Yamazaki, T., Ohtsubo, M., et al. (2016). Smart polishing of hard-to-machine materials with an innovative dilatancy pad under high-pressure, high-speed, immersed condition. ECS Journal of Solid State Science and Technology, 5(10), 598–607.

    Article  Google Scholar 

  23. Lee, H., & Jeong, H. (2015). Analysis of removal mechanism on oxide CMP using mixed abrasive slurry. International Journal of Precision Engineering and Manufacturing, 16(3), 603–607.

    Article  Google Scholar 

  24. Lee, H. S., Kim, D. I., An, J. H., et al. (2010). Hybrid polishing mechanism of single crystal SiC using mixed abrasive slurry (MAS). CIRP Annals-Manufacturing Technology, 59(1), 333–336.

    Article  Google Scholar 

  25. Lee, H. J., Park, B. Y., Lee, H. S., Jeong, S. H., & Seo, H. D. (2008). The effect of mixed abrasive slurry on CMP of 6H-SiC substrates. Materials Science Forum, 569, 133–136.

    Google Scholar 

  26. Lee, D., Lee, H., & Jeong, H. (2016). Slurry components in metal chemical mechanical planarization (CMP) process: A review. International Journal of Precision Engineering and Manufacturing, 17(12), 1751–1762.

    Article  Google Scholar 

  27. Yun, J. C., Lee, E. S., Lee, C. H., et al. (2019). Analysis of parameters affecting the surface roughness in sapphire wafer polishing using nanocrystalline–microcrystalline multilayer diamond CVD pellets. International Journal of Precision Engineering and Manufacturing, 20, 883–891.

    Article  Google Scholar 

  28. Runnels, S. R., & Eyman, L. M. (1994). Tribology analysis of chemical-mechanical polishing. Journal of The Electrochemical Society, 141(6), 1698–1701.

    Article  Google Scholar 

  29. Singh, B. P., Jena, J., Besra, L., & Bhattacharjee, S. (2007). Dispersion of Nano-silicon carbide (SiC) powder in aqueous suspensions. Journal of Nanoparticle Research, 9, 797–806.

    Article  Google Scholar 

  30. Hashiba, M., Okamoto, H., Nurishi, Y., & Hiramatsu, K. (1988). the zeta-potential measurement forconcentrated aqueous suspension by improvedelectrophoretic mass transport apparatus -application to AI203, ZrO3 and SiC suspensions. Journal of Materials Science, 23, 2893–2896.

    Article  Google Scholar 

  31. Adewale, I. D., & Tian, G. Y. (2013). Decoupling the influence of permeability and conductivity in pulsed eddy current measurements. IEEE Transactions on Magnetics, 49(3), 1119–1127.

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by National Natural Science Foundation of China (51275272), Zhejiang Province Public Welfare Technology Application Research Project (LGG18E050013), Talent Development Projects of Quzhou University (003216017), and Science and Technology Major Projects of Quzhou (2016Y008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, T., Wang, Z., Doi, T. et al. Characteristic of SiC Slurry in Ultra Precision Lapping of Sapphire Substrates. Int. J. Precis. Eng. Manuf. 22, 1021–1029 (2021). https://doi.org/10.1007/s12541-021-00521-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-021-00521-1

Keywords

Navigation