Skip to main content
Log in

Seasonal variations in water flux compositions controlled by leaf development: isotopic insights at the canopy–atmosphere interface

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Water-stable isotopes provide a valuable tool for tracing plant-water interactions, particularly evapotranspiration (ET) partitioning and leaf water dynamics at the plant-atmosphere interface. However, process-based investigations of plant/leaf development and the associated isotopic dynamics of water fluxes involving isotope enrichment at plant-atmosphere interfaces at the ecosystem scale remain challenging. In this study, in situ isotopic measurements and tracer-aided models were used to study the dynamic interactions between vegetation growth and the isotopic dynamics of water fluxes (ET, soil evaporation, and transpiration) involving isotope enrichment in canopy leaves in a multispecies grassland ecosystem. The day-to-day variations in the isotopic compositions of ET flux were mainly controlled by plant growth, which could be explained by the significant logarithmic relationship determined between the leaf area index and transpiration fraction. Leaf development promoted a significant increase in the isotopic composition of ET and led to a slight decrease in the isotopic composition of water in canopy leaves. The transpiration (evaporation) isoflux acted to increase (decrease) the δ18O of water vapor, and the total isoflux impacts depended on the seasonal tradeoffs between transpiration and evaporation. The isotopic evidence in ET fluxes demonstrates the biotic controls on day-to-day variations in water/energy flux partitioning through transpiration activity. This study emphasizes that stable isotopes of hydrogen and oxygen are effective tools for quantitative evaluations of the hydrological component partitioning of ecosystems and plant-climate interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arora V (2002) Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models. Rev Geophys 40(2):1006. https://doi.org/10.1029/2001RG000103

    Article  Google Scholar 

  • Barbour MM, Roden JS, Farquhar GD, Ehleringer JR (2004) Expressing leaf water and cellulose oxygen isotope ratios as enrichment above source water reveals evidence of a Péclet effect. Oecologia 138(3):426–435

    Article  Google Scholar 

  • Barbour MM, Schurr U, Henry BK, Wong SC, Farquhar GD (2000) Variation in the oxygen isotope ratio of phloem sap sucrose from castor bean. Evidence in support of the Péclet effect. Plant Physiol 123(2):671–680

    Article  CAS  Google Scholar 

  • Barnard RL, Salmon Y, Kodama N, Sorgel K, Holst J, Rennenberg H, Gessler A, Buchmann N (2007) Evaporative enrichment and time lags between δ18O of leaf water and organic pools in a pine stand. Plant Cell Environ 30(5):539–550. https://doi.org/10.1111/j.1365-3040.2007.01654.x

    Article  CAS  Google Scholar 

  • Braud I, Bariac T, Gaudet JP, Vauclin M (2005) SiSPAT-Isotope, a coupled heat, water and stable isotope (HDO and H218O) transport model for bare soil. Part I. Model description and first verifications. J Hydrol 309(1-4):277–300

    Article  Google Scholar 

  • Cernusak LA, Barbour MM, Arndt SK, Cheesman AW, English NB, Feild TS, Helliker BR, Holloway-Phillips MM, Holtum JAM, Kahmen A, McInerney FA, Munksgaard NC, Simonin KA, Song X, Stuart-Williams H, West JB, Farquhar GD (2016) Stable isotopes in leaf water of terrestrial plants. Plant Cell Environ 39:1081–1102. https://doi.org/10.1111/pce.12703

    Article  CAS  Google Scholar 

  • Cernusak LA, Arthur DJ, Pate JS, Farquhar GD (2003) Water relations link carbon and oxygen isotope discrimination to phloem sap sugar concentration in Eucalyptus globulus. Plant Physiol 131(4):1544–1554

    Article  CAS  Google Scholar 

  • Charney JG (1975) Dynamics of deserts and drought in the Sahel. Q J Roy Meteor Soc 101(428):193–202. https://doi.org/10.1002/qj.49710142802

    Article  Google Scholar 

  • Craig H, Gordon LI (1965) Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In: Proceedings of a conference on stable isotopes in oceanographic studies and palaeo temperatures. Spoleto Italy, pp 9–130

  • Cuntz M, Ogee J, Farquhar GD, Peylin P, Cernusak LA (2007) Modelling advection and diffusion of water isotopologues in leaves. Plant Cell Environ 30(8):892–909

    Article  CAS  Google Scholar 

  • Dansgaard W (1953) The abundance of 18O in atmospheric water and water vapour. Tellus 5(4):461–469. https://doi.org/10.3402/tellusa.v5i4.8697

    Article  Google Scholar 

  • Dawson TE, Ehleringer JR (1993) Isotopic enrichment of water in the woody tissues of plants: implications for plant water source, water uptake, and other studies which use the stable isotopic composition of cellulose. Geochim Cosmochim Ac 57(14):3487–3492

    Article  CAS  Google Scholar 

  • Dickinson RE, Henderson-Sellers A (1988) Modeling tropical deforestation. Q J Roy Meteor Soc 114:439–462. https://doi.org/10.1002/qj.49711448009

    Article  Google Scholar 

  • Dongmann G, Nürnberg HW, Förstel H, Wagener K (1974) On the enrichment of H218O in the leaves of transpiring plants. Radiat Environ Biophys 11:41–52

    Article  CAS  Google Scholar 

  • Dubbert M, Cuntz M, Piayda A, Werner C (2014) Oxygen isotope signatures of transpired water vapor: the role of isotopic non-steady-state transpiration under natural conditions. New Phytol 203:1242–1252

    Article  CAS  Google Scholar 

  • Dubbert M, Werner C (2019) Water fluxes mediated by vegetation: emerging isotopic insights at the soil and atmosphere interfaces. New Phytol 221:1754–1763. https://doi.org/10.1111/nph.15547

    Article  Google Scholar 

  • Farquhar GD, Lloyd J, Taylor JA, Flanagan LB, Syvertsen JP, Hubick KT, Wong SC, Ehleringer JR (1993) Vegetation effects on the isotope composition of oxygen in atmospheric CO2. Nature 363:439–443. https://doi.org/10.1038/363439a0

    Article  CAS  Google Scholar 

  • Farquhar GD, Cernusak LA (2005) On the isotopic composition of leaf water in the non-steady state. Funct Plant Biol 32(4):293–303

    Article  CAS  Google Scholar 

  • Fatichi S, Vivoni E, Ogden FL et al (2016) An overview of current applications, challenges, and future trends in distributed process-based models in hydrology. J Hydrol 537:45–60. https://doi.org/10.1016/j.jhydrol.2016.03.026

    Article  Google Scholar 

  • Flanagan LB, Bain JF, Ehleringer JR (1991) Stable oxygen and hydrogen isotope composition of leaf water in C3 and C4 plant species under field conditions. Oecologia 88(3):394–400

    Article  Google Scholar 

  • Griffis TJ (2013) Tracing the flow of carbon dioxide and water vapor between the biosphere and atmosphere: a review of optical isotope techniques and their application. Agric For Meteorol 174:85–109. https://doi.org/10.1016/j.agrformet.2013.02.009

    Article  Google Scholar 

  • Gat JR (1996) Oxygen and hydrogen isotopes in the hydrologic cycle. Annu Rev Earth Pl Sc 24(1):225–262. https://doi.org/10.1146/annurev.earth.24.1.225

    Article  CAS  Google Scholar 

  • Good SP, Soderberg K, Guan KY, King EG, Scanlon TM, Caylor KK (2014) δ2H isotopic flux partitioning of evapotranspiration over a grass field following a water pulse and subsequent dry down. Water Resour Res 50(2):1410–1432. https://doi.org/10.1002/2013WR014333

    Article  Google Scholar 

  • Good SP, Soderberg K, Wang LX, Caylor KK (2012) Uncertainties in the assessment of the isotopic composition of surface fluxes: a direct comparison of techniques using laser-based water vapor isotope analyzers. J Geophys Res 117:D15301. https://doi.org/10.1029/2011JD017168

    Article  CAS  Google Scholar 

  • Good SP, Noone D, Bowen G (2015) Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 349:175–177

    Article  CAS  Google Scholar 

  • Hammerle A, Haslwanter A, Tappeiner U, Cernusca A, Wohlfahrt G (2008) Leaf area controls on energy partitioning of a temperate mountain grassland. Biogeosciences 5(2):421–431

    Article  Google Scholar 

  • Helliker BR, Ehleringer JR (2000) Establishing a grassland signature in veins: 18O in the leaf water of C3 and C4 grasses. P Natl Acad Sci USA 97(14):7894–7898. https://doi.org/10.1073/pnas.97.14.7894

    Article  CAS  Google Scholar 

  • Henderson-Sellers A, Fischer M, Aleinov I, McGuffie K, Riley W, Schmidt G, Sturm K, Yoshimura K, Irannejad P (2006) Stable water isotope simulation by current land-surface schemes: results of iPILPS phase 1. Glob Planet Chang 51(1-2):34–58

    Article  Google Scholar 

  • Hiyama T, Sugita M, Mikami M (1993) Comparisons of the latent heat fluxes evaluated by a weighing lysimeter and an energy balance method. Bull Environ Res Cent Univ Tsukuba 18:41–53

    Google Scholar 

  • Hu ZM, Wen XF, Sun XM, Li LH, Yu GR, Lee XH, Li SG (2014) Partitioning of evapotranspiration through oxygen isotopic measurements of water pools and fluxes in a temperate grassland. J Geophys Res Biogeosci 119(3):358–371. https://doi.org/10.1002/2013JG002367

    Article  CAS  Google Scholar 

  • Hu ZM, Yu GR, Zhou YL, Sun X, Li Y, Shi P, Wang Y, Song X, Zheng Z, Zhang L, Li S (2009) Partitioning of evapotranspiration and its controls in four grassland ecosystems: application of a two-source model. Agric For Meteorol 149(9):1410–1420. https://doi.org/10.1016/j.agrformet.2009.03.014

    Article  Google Scholar 

  • Huang LJ, Wen XF (2014) Temporal variations of atmospheric water vapor δD and δ18O above an arid artificial oasis cropland in the Heihe River Basin. J Geophys Res-Atmos 119:11456–11476. https://doi.org/10.1002/2014JD021891

    Article  CAS  Google Scholar 

  • Jasechko S, Sharp ZD, Gibson JJ, Birks SJ, Yi Y, Fawcett PJ (2013) Terrestrial water fluxes dominated by transpiration. Nature 496:347–350. https://doi.org/10.1038/nature11983

    Article  CAS  Google Scholar 

  • Jelka BB, Christian M, Alexander K (2019) Eddy covariance measurements of the dual-isotope composition of evapotranspiration. Agric For Meteorol 269-270:203–219. https://doi.org/10.1016/j.agrformet.2019.01.035

    Article  Google Scholar 

  • Kahmen A, Simonin K, Tu KP, Merchant A, Callister A, Siegwolf R, Dawson TE, Arndt SK (2008) Effects of environmental parameters, leaf physiological properties and leaf water relations on leaf water δ18O enrichment in different Eucalyptus species. Plant Cell Environ 31:738–751

    Article  CAS  Google Scholar 

  • Keeling CD (1958) The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochim Cosmochim Ac 13(4):322–334

    Article  CAS  Google Scholar 

  • Lai CT, Ehleringer JR, Bond BJ, Paw KT (2005) Contributions of evaporation, isotopic non-steady state transpiration and atmospheric mixing on the δ18O of water vapor in Pacific Northwest coniferous forests. Plant Cell Environ 29:77–94

    Article  Google Scholar 

  • Lean J, Rowntree PR (1997) Understanding the sensitivity of a GCM simulation of Amazonian deforestation to the specification of vegetation and soil characteristics. J Clim 10:1216–1235

    Article  Google Scholar 

  • Leaney FW, Osmond CB, Allison GB, Ziegler H (1985) Hydrogen-isotope composition of leaf water in C3 and C4 plants: its relationship to the hydrogen-isotope composition of dry matter. Planta 164:215–220

    Article  CAS  Google Scholar 

  • Lee XH, Sargent S, Smith R, Tanner B (2005) In-situ measurement of the water vapor 18O/16O isotope ratio for atmospheric and ecological applications. J Atmos Ocean Technol 22:555–565

    Article  Google Scholar 

  • Lee X, Kim K, Smith R (2007) Temporal variations of the O-18/O-16 signal of the whole-canopy transpiration in a temperate forest. Global Biogeochem Cy 21:3013

    Article  Google Scholar 

  • Lee XH, Griffis TJ, Baker JM, Billmark KA, Kim K, Welp LR (2009) Canopy-scale kinetic fractionation of atmospheric carbon dioxide and water vapor isotopes. Global Biogeochem Cy 23:GB1002. https://doi.org/10.1029/2008GB003331

    Article  CAS  Google Scholar 

  • Lian X, Piao SL, Chris H et al (2018) Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat Clim Chang 8(7):640–646. https://doi.org/10.1038/s41558-018-0207-9

    Article  Google Scholar 

  • Li SG, Lai CT, Lee G, Shimoda S, Yokoyama T, Higuchi A, Oikawa T (2005) Evapotranspiration from a wet temperate grassland and its sensitivity to micro environmental variables. Hydrol Process 19(2):517–532. https://doi.org/10.1002/hyp.5673

    Article  CAS  Google Scholar 

  • Ma WC, Asanuma J, Xu JQ, Onda Y (2018) A database of water and heat observations over grassland in the north-east of Japan. Earth Syst Sci Data 10(4):2295–2309. https://doi.org/10.5194/essd-10-2295-2018

    Article  Google Scholar 

  • Maxwell RM, Condon LE (2016) Connections between groundwater flow and transpiration partitioning. Science 353:377–380. https://doi.org/10.1126/science.aaf7891

    Article  CAS  Google Scholar 

  • Moreira M, Sternberg L, Martinelli L, Victoria R, Barbosa E, Bonates L, Nepstad D (1997) Contribution of transpiration to forest ambient vapor based on isotopic measurements. Glob Chang Biol 3(5):439–450. https://doi.org/10.1046/j.1365-2486.1997.00082.x

    Article  Google Scholar 

  • Riley WJ, Still CJ, Torn MS, Berry JA (2002) A mechanistic model of H218O and C18OO fluxes between ecosystems and the atmosphere: model description and sensitivity analyses. Global Biogeochem Cy 16(4):1095–42-14. https://doi.org/10.1029/2002GB001878

    Article  CAS  Google Scholar 

  • Song X, Loucos KE, Simonin KA, Farquhar GD, Barbour MM (2015) Measurements of transpiration isotopologues and leaf water to assess enrichment models in cotton. New Phytol 206(2):637–646. https://doi.org/10.1111/nph.13296

    Article  CAS  Google Scholar 

  • Sprenger M, Leistert H, Gimbel K, Weiler M (2016) Illuminating hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes. Rev Geophys 54:674–704

    Article  Google Scholar 

  • Twine TE, Kustas WP, Norman JM, Cook DR, Houser PR, Meyers TP, Prueger JH, Starks PJ, Wesely ML (2000) Correcting eddy-covariance flux underestimates over a grassland. Agric For Meteorol 103(3):279–300. https://doi.org/10.1016/S0168-1923(00)00123-4

    Article  Google Scholar 

  • Wang P, Yamanaka T (2014) Application of a two-source model for partitioning evapotranspiration and assessing its controls in temperate grasslands in central Japan. Ecohydrology 7:345–353. https://doi.org/10.1002/eco.1352

    Article  Google Scholar 

  • Wang P, Yamanaka T, Li XY, Wei ZW (2015) Partitioning evapotranspiration in a temperate grassland ecosystem: numerical modeling with isotopic tracers. Agric For Meteorol 208:16–31. https://doi.org/10.1016/j.agrformet.2015.04.006

    Article  Google Scholar 

  • Wang P, Yamanaka T, Li XY, Wu XC, Chen B, Liu YP, Wei ZW, Ma WC (2018a) A multiple time scale modeling investigation of leaf water isotope enrichment in a temperate grassland ecosystem. Ecol Res 33(5):901–915. https://doi.org/10.1007/s11284-018-1591-3

    Article  CAS  Google Scholar 

  • Wang P, Li XY, Huang YM, Liu SM, Xu ZW, Wu XC, Ma YJ (2016) Numerical modeling the isotopic composition of evapotranspiration in an arid artificial oasis cropland ecosystem with high–frequency water vapor isotope measurement. Agric For Meteorol 230–231:79–88

    Article  Google Scholar 

  • Wang P, Li XY, Wang LX, Wu XC, Hu X, Fan Y, Tong YQ (2018b) Divergent evapotranspiration partition dynamics between shrubs and grasses in a shrub-encroached steppe ecosystem. New Phytol 219(4):1325–1337. https://doi.org/10.1111/nph.15237

    Article  Google Scholar 

  • Wang LX, Caylor KK, Villegas JC, Barron-Gafford GA, Breshears DD, Huxman TE (2010) Partitioning evapotranspiration across gradients of woody plant cover: assessment of a stable isotope technique. Geophys Res Lett 37(9). https://doi.org/10.1029/2010GL043228

  • Wang LX, Good SP, Caylor KK (2014) Global synthesis of vegetation control on evapotranspiration partitioning. Geophys Res Lett 41(19):6753–6757

    Article  Google Scholar 

  • Wei ZW, Yoshimura K, Okazaki A, Kim W, Liu ZF, Yokoi M (2015) Partitioning of evapotranspiration using high-frequency water vapor isotopic measurement over a rice paddy field. Water Resour Res 51:3716–3729. https://doi.org/10.1002/2014WR016737

    Article  Google Scholar 

  • Wei ZW, Yoshimura K, Okazaki A, Ono K, Kim W, Yokoi M, Lai CT (2016) Understanding the variability of water isotopologues in near-surface atmospheric moisture over a humid subtropical rice paddy in Tsukuba, Japan. J Hydrol 533:91–102. https://doi.org/10.1016/j.jhydrol.2015.11.044

    Article  CAS  Google Scholar 

  • Wei ZW, Yoshimura K, Wang LX, Miralles DG, Jasechko S, Lee XH (2017) Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophys Res Lett 44:2792–2801. https://doi.org/10.1002/2016GL072235

    Article  Google Scholar 

  • Wei ZW, Lee XH, Wen XF, Xiao W (2018a) Evapotranspiration partitioning for three agro-ecosystems with contrasting moisture conditions: a comparison of an isotope method and a two-source model calculation. Agric For Meteorol 252:296–310

    Article  Google Scholar 

  • Wei ZW, Lee XH, Patton EG (2018b) ISOLESC: A coupled isotope-LSM-LES-cloud modeling system to investigate the water budget in the atmospheric boundary layer. J Adv Model Earth Sy 10(10):2589–2617. https://doi.org/10.1029/2018MS001381

    Article  Google Scholar 

  • Wen X-F, Sun X-M, Zhang S-C, Yu G, Sargent SD, Lee X (2008) Continuous measurement of water vapor D/H and 18O/16O isotope ratios in the atmosphere. J Hydrol 349(3–4):489–500

    Article  Google Scholar 

  • Wen X-F, Yang B, Sun X-M, Lee X (2016) Evapotranspiration partitioning through in-situ oxygen isotope measurements in an oasis cropland. Agric and For Meteorol 230–231:89–96

    Article  Google Scholar 

  • West AG, Patrickson SJ, Ehleringer JR (2006) Water extraction times for plant and soil materials used in stale isotope analysis. Rapid Commun Mass Sp 20:1317–1321. https://doi.org/10.1002/rcm.2456

    Article  CAS  Google Scholar 

  • Williams D, Cable W, Hultine K, Hoedjes J, Yepez E, Simonneaux V, Er-Raki S, Boulet G, De Bruin H, Chehbouni A (2004) Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agric and For Meteorol 125(3–4):241–258

    Article  Google Scholar 

  • Willmott CJ, Ackleson SG, Davis RE, Feddema JJ, Klink KM, Legates DR, O’donnell J, Rowe CM (1985) Statistics for the evaluation and comparison of models. J Geophys Res 90(C5):8995

    Article  Google Scholar 

  • Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002) Energy balance closure at FLUXNET sites. Agric For Meteorol 113(1-4):223–243. https://doi.org/10.1016/S0168-1923(02)00109-0

    Article  Google Scholar 

  • Xiao W, Lee XH, Wen XF, Sun XM, Zhang SC (2012) Modeling biophysical controls on canopy foliage water 18O enrichment in wheat and corn. Glob Chang Biol 18:1769–1780

    Article  Google Scholar 

  • Xiao W, Lee XH, Griffis TJ, Kim K, Welp LR, Yu Q (2010) A modeling investigation of canopy-air oxygen isotopic exchange of water vapor and carbon dioxide in a soybean field. J Geophys Res 115(G1):G01004. https://doi.org/10.1029/2009JG001163

    Article  CAS  Google Scholar 

  • Xiao W, Wei ZW, Wen XF (2018) Evapotranspiration partitioning at the ecosystem scale using the stable isotope method-a review. Agric For Meteorol 263:346–361. https://doi.org/10.1016/j.agrformet.2018.09.005

    Article  Google Scholar 

  • Yakir D, Sternberg LSL (2000) The use of stable isotopes to study ecosystem gas exchange. Oecologia 123(3):297–311. https://doi.org/10.1007/s004420051016

    Article  CAS  Google Scholar 

  • Yakir D, Wang XF (1996) Fluxes of CO2 and water between terrestrial vegetation and the atmosphere estimated from isotope measurements. Nature 380:515–517 https://www.researchgate.net/publication/232786872

    Article  CAS  Google Scholar 

  • Yamanaka T, Tsunakawa A (2007) Isotopic signature of evapotranspiration flux and its use for partitioning evaporation/transpiration components. Tsukuba Geoenviron Sci Univ Tsukuba 3:11–21

    Google Scholar 

  • Yamanaka T, Onda Y (2011) On measurement accuracy of liquid water isotope analyzer based on wavelength-scanned cavity ring-down spectroscopy (WS-CRDS). Bull Terrestrial Environ Res Cent Univ Tsukuba 12:31–40

    Google Scholar 

  • Yepez EA, Williams DG, Scott RL, Lin GH (2003) Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor. Agric For Meteorol 119(1-2):53–68. https://doi.org/10.1016/S0168-1923(03)00116-3

    Article  Google Scholar 

  • Yoshimura K, Miyazaki S, Kanae S, Oki T (2006) Iso-MATSIRO, a land surface model that incorporates stable water isotopes. Glob Planet Chang 51(1):90–107. https://doi.org/10.1016/j.gloplacha.2005.12.007

    Article  Google Scholar 

  • Zhao P, Zhang XT, Li S, Kang SZ (2017) Vineyard energy partitioning between canopy and soil surface: dynamics and biophysical controls. J Hydrometeorol 18(7):1809–1829

    Article  Google Scholar 

  • Zhou GY, Wei XH, Chen XZ, Zhou P, Liu X, Xiao Y, Sun G, Scott DF, Zhou S, Han L, Su Y (2015) Global pattern for the effect of climate and land cover on water yield. Nat Commun 6:5918

    Article  CAS  Google Scholar 

  • Zhao P, Tang XY, Zhao P, Wang C, Tang JL (2013) Identifying the water source for subsurface flow with deuterium and oxygen-18 isotopes of soil water collected from tension lysimeters and cores. J Hydrol 503(30):1–10

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA20100102) and the National Natural Science Foundation of China (42071034 and 41730854). P. W acknowledges support from the special research project of the Center for Research in Isotopes and Environmental Dynamics (CRiED), University of Tsukuba. X. S acknowledges support from the General Research Scheme of the National Science Foundation of China (31770435). All the data used in the current research are available in the supporting information.

Author information

Authors and Affiliations

Authors

Contributions

P. W designed the research. P. W and H. Sun performed the modeling simulations and sensitivity analysis. P. W, X-Y. Li, X. Song, X. Yang, X. Wu, X. Hu, J. J Ma, and J. J Ma contributed to the interpretation and writing. P. W contributed to the field investigation. P. W performed the isotopic measurements and analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pei Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Leaf development controlled the isotopic seasonal variations in water fluxes by regulating flux composition

• Leaf development slightly decreased the isotopic enrichment of canopy leaves

• Transpiration/evaporation acted to increase/decrease the δ18O of water vapor, which actually affected by the seasonal trade-off between them

Supplementary Information

ESM 1

(DOCX 3063 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Sun, H., Li, XY. et al. Seasonal variations in water flux compositions controlled by leaf development: isotopic insights at the canopy–atmosphere interface. Int J Biometeorol 65, 1719–1732 (2021). https://doi.org/10.1007/s00484-021-02126-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-021-02126-9

Keywords

Navigation