Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T21:54:31.066Z Has data issue: false hasContentIssue false

Synthesis, crystal structure, and X-ray diffraction data of lithium m-phenylenediamine sulfate Li2(C6H10N2)(SO4)2

Published online by Cambridge University Press:  13 April 2021

Junyan Zhou*
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing101408, China
Congcong Chai
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing101408, China
Munan Hao
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing101408, China
Xin Zhong
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
*
a)Author to whom correspondence should be addressed. Electronic mail: 348612272@qq.com

Abstract

A new organic–inorganic hybrid lithium m-phenylenediamine sulfate (LPS), Li2(C6H10N2)(SO4)2, was synthesized under aqueous solution conditions. The X-ray powder diffraction study determined that the title compound crystallized in a monoclinic system at 300 K, with unit-cell parameters a = 7.8689(6) Å, b = 6.6353(5) Å, c = 11.8322(10) Å, β = 109.385(3) °, V = 582.77(8) Å3. Indexing of the diffraction patterns collected from 100 to 600 K reveals that LPS has no structural phase transition within the measured temperature range, and the volume expansion coefficient is approximately 2.79 × 10−5 K−1. The crystal structure was solved based on the single-crystal diffraction data with space group P21/m. Lithium and SO42− are found to form quasi-two-dimensional anti-fluorite [LiSO4] layers stacking along the c-axis, with m-phenylenediamine molecules inserted in the anti-fluorite layers and forming hydrogen bonds to the SO42−. This explains a moderate anisotropic expansion in LPS.

Type
New Diffraction Data
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albright, J. G. (1933). “The crystal structure of lithium sulphate,” Z. Kristallogr. Cryst. Mater. 84, 252258.10.1524/zkri.1933.84.1.150CrossRefGoogle Scholar
Ban, Z. and Sikirica, M. (1965). “The crystal structure of ternary silicides ThM2Si2 (M = Cr, Mn, Fe, Co, Ni and Cu),” Acta Crystallogr. 18, 594599.10.1107/S0365110X6500141XCrossRefGoogle Scholar
Chen, X. G., Song, X. J., Zhang, Z. X., Li, P. F., Ge, J. Z., Tang, Y. Y., Gao, J. X., Zhang, W. Y., Fu, D. W., You, Y. M., and Xiong, R. G. (2020). “Two-dimensional layered perovskite ferroelectric with giant piezoelectric voltage coefficient,” J. Am. Chem. Soc. 142, 10771082.10.1021/jacs.9b12368CrossRefGoogle ScholarPubMed
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.10.1107/S002188986800508XCrossRefGoogle Scholar
Fan, X., Deng, J., Chen, H., Zhao, L., Sun, R., Jin, S., and Chen, X. (2018). “Nematicity and superconductivity in orthorhombic superconductor Na0.35(C3N2H10)0.426Fe2Se2,” Phys. Rev. Mater. 2, 114802.10.1103/PhysRevMaterials.2.114802CrossRefGoogle Scholar
Gates-Rector, S. D., and Blanton, T. N. (2019). “The powder diffraction file: a quality materials characterization database,” Powd. Diffr. 34, 352360.10.1017/S0885715619000812CrossRefGoogle Scholar
Hu, Y., Florio, F., Chen, Z., Phelan, W. A., Siegler, M. A., Zhou, Z., Guo, Y., Hawks, R., Jiang, J., Feng, J., Zhang, L., Wang, B., Wang, Y., Gall, D., Palermo, E. F., Lu, Z., Sun, X., Lu, T. M., Zhou, H., Ren, Y., Wertz, E., Sundararaman, R., and Shi, J. (2020). “A chiral switchable photovoltaic ferroelectric 1D perovskite,” Sci. Adv. 6, eaay4213.10.1126/sciadv.aay4213CrossRefGoogle ScholarPubMed
Hurd, J. A., Vaidhyanathan, R., Thangadurai, V., Ratcliffe, C. I., Moudrakovski, I. L., and Shimizu, G. K. (2009). “Anhydrous proton conduction at 150 degrees C in a crystalline metal-organic framework,” Nat. Chem. 1, 705710.10.1038/nchem.402CrossRefGoogle Scholar
Jin, S., Fan, X., Wu, X., Sun, R., Wu, H., Huang, Q., Shi, C., Xi, X., Li, Z., and Chen, X. (2017). “High-Tc superconducting phases in organic molecular intercalated iron selenides: synthesis and crystal structures,” Chem. Commun. 53, 97299732.10.1039/C7CC05242ACrossRefGoogle ScholarPubMed
Ju, M. G., Dai, J., Ma, L., Zhou, Y., and Zeng, X. C. (2018). “Zero-dimensional organic-inorganic perovskite variant: transition between molecular and solid crystal,” J. Am. Chem. Soc. 140, 1045610463.CrossRefGoogle ScholarPubMed
Laugier, J. and Bochu, B. (2002). CHEKCELL, LMGP-Suite of Programs for the Interpretation of X-ray Experiments. ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46. 38042 Saint Martin d'Hères, France. Available at: http://www.inpg.fr/LMGP and http://www.ccp14.ac.uk/tutorial/lmgp/.Google Scholar
Li, W., Wang, Z., Deschler, F., Gao, S., Friend, R. H., and Cheetham, A. K. (2017). “Chemically diverse and multifunctional hybrid organic–inorganic perovskites,” Nat. Rev. Mater. 2, 16099.10.1038/natrevmats.2016.99CrossRefGoogle Scholar
Liao, W. Q., Zhao, D., Tang, Y. Y., Zhang, Y., Li, P. F., Shi, P. P., Chen, X. G., You, Y. M., and Xiong, R. G. (2019). “A molecular perovskite solid solution with piezoelectricity stronger than lead zirconate titanate,” Science 363, 12061210.10.1126/science.aav3057CrossRefGoogle ScholarPubMed
Llabresixamena, F., Abad, A., Corma, A., and Garcia, H. (2007). “MOFs as catalysts: activity, reusability and shape-selectivity of a Pd-containing MOF,” J. Catal. 250, 294298.10.1016/j.jcat.2007.06.004CrossRefGoogle Scholar
Louër, D. and Boultif, A. (2014). “Some further considerations in powder diffraction pattern indexing with the dichotomy method,” Powd. Diffr. 29, S7S12.10.1017/S0885715614000906CrossRefGoogle Scholar
Mighell, A. D., Hubbard, C. R., and Stalick, J. K. (1981). NBS*AIDS80, A FORTRAN Program for Crystallographic Data Evaluation. NBS (U.S.) Technical Note 1141 (U.S. Department of Commerce (NBS*Aids83 is upgraded from NBS*Aids80), Gaithersburg, MD).10.6028/NBS.TN.1141CrossRefGoogle Scholar
Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M., and Yaghi, O. M. (2003). “Hydrogen storage in microporous metal-organic frameworks,” Science 300, 11271129.10.1126/science.1083440CrossRefGoogle ScholarPubMed
Saparov, B. and Mitzi, D. B. (2016). “Organic-iorganic perovskites: structural versatility for functional materials design,” Chem. Rev. 116, 45584596.10.1021/acs.chemrev.5b00715CrossRefGoogle ScholarPubMed
Sheldrick, G. M. (2008). “A short history of SHELX,” Acta Crystallogr. A 64, 112122.10.1107/S0108767307043930CrossRefGoogle Scholar
Smith, G. S. and Snyder, R. L. (1979). “FN: a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.10.1107/S002188987901178XCrossRefGoogle Scholar
Wang, C., Zhang, T., and Lin, W. (2012). “Rational synthesis of noncentrosymmetric metal-organic frameworks for second-order nonlinear optics,” Chem. Rev. 112, 10841104.10.1021/cr200252nCrossRefGoogle ScholarPubMed
Yanai, N., Kitayama, K., Hijikata, Y., Sato, H., Matsuda, R., Kubota, Y., Takata, M., Mizuno, M., Uemura, T., and Kitagawa, S. (2011). “Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer,” Nat. Mater. 10, 787793.10.1038/nmat3104CrossRefGoogle Scholar
Zhao, L., Wang, D., Huang, Q., Wu, H., Sun, R., Fan, X., Song, Y., Jin, S. and Chen, X. (2019). “Structural evolution and phase diagram of the superconducting iron selenides Lix(C2H8N2)yFe2Se2(x=0~0.8),” Phys. Rev. B. 99, 094503.CrossRefGoogle Scholar