Skip to main content
Log in

Bidirectional Edge Asymmetric Light Transmission in Metal/Dielectric Device Based on Asymmetric Diffraction

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Asymmetric light transmission (ALT) or optical diode-like nanodevices have attracted many research interests in recent years for its rosy potential application in all optical computing and information systems. In this work, we propose and numerically demonstrate a bidirectional edge asymmetric light transmission (BE-ALT) device, which is composed by the easy-processing metal/dielectric cylinders arranged periodically on glass substrate. The ALT effect in the proposed BE-ALT device shows a saltation at one critical wavelength, i.e., the asymmetric subtraction owns different signs for the wavelength larger and smaller than the critical wavelength. The asymmetric subtraction designed in this work changes dramatically from − 60% to + 80% at around 600 nm, which can be effectively manipulated by applying different structure parameters. The underlying physical mechanism has been investigated systematically, including the asymmetric diffraction effect, localized surface plasmonic resonance (LSPR), and the waveguide mode (WGM). Our designed BE-ALT device provides a new choice for the practical applications of ALT effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fan L, Wang J, Varghese LT, Shen H, Niu B, Xuan Y, Weiner AM, Qi M (2012) An all-silicon passive optical diode. Science 335:447–450

    Article  CAS  Google Scholar 

  2. Feng L, Ayache M, Huang J, Xu Y, Lu M, Chen Y, Fainman Y, Scherer A (2011) Nonreciprocal light propagation in a silicon photonic circuit. Science 333:729–733

    Article  CAS  Google Scholar 

  3. Bi L, Hu J, Jiang P, Kim D, Dionne GF, Kimerling LC, Ross CA (2011) On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat Photonics 5:758–762

    Article  CAS  Google Scholar 

  4. Haus HA (1984) Waves and fields in optoelectronics. Prentice-Hall, New Jersey

    Google Scholar 

  5. Zaman T, Guo X, Ram R (2007) Faraday rotation in an InP waveguide. Appl Phys Lett 90:023514

    Article  Google Scholar 

  6. Espinola RL, Izuhara T, Tsai MC, Osgood RM, Dötsch H (2004) Magneto-optical nonreciprocal phase shift in garnet/silicon-on-insulator waveguides. Opt Lett 29:941–943

    Article  CAS  Google Scholar 

  7. Soljačić M, Luo C, Joannopoulos JD, Fan S (2003) Nonlinear photonic crystal microdevices for optical integration. Opt Lett 28:637–639

    Article  Google Scholar 

  8. Gallo K, Assanto G, Parameswaran KR, Fejer MM (2001) All-optical diode in a periodically poled lithium niobate waveguide. Appl Phys Lett 79:314–316

    Article  CAS  Google Scholar 

  9. Zang X, Jiang C (2009) Nonlinear dynamic properties of nonreciprocal indirect interband photonic transitions. JOSA B 26:2275–2279

    Article  CAS  Google Scholar 

  10. Kang M, Butsch A, Russell PSJ (2011) Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat Photonics 5:549–553

    Article  CAS  Google Scholar 

  11. Vanwolleghem M, Checoury X, Śmigaj W, Gralak B, Magdenko L, Postava K, Dagens B, Beauvillain P, Lourtioz J (2009) Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals. Phys Rev B 80:121102

    Article  Google Scholar 

  12. Liu V, Miller DAB, Fan SH (2012) Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect. Opt Express 20(27):28388–28397

    Article  Google Scholar 

  13. Cakmakyapan S, Serebryannikov AE, Caglayan H, Ozbay E (2010) One-way transmission through the subwavelength slit in nonsymmetric metallic gratings. Opt Lett 35:2597–2599

    Article  Google Scholar 

  14. Stolarek M, Yavorskiy D, Kotyński R, Rodríguez CJZ, Łusakowski J, Szoplik T (2013) Asymmetric transmission of terahertz radiation through a double grating. Opt Lett 38:839–841

    Article  Google Scholar 

  15. Kuzmiak V, Maradudin AA (2015) Asymmetric transmission of surface plasmon polaritons on planar gratings. Phys Rev A 92:053813

    Article  Google Scholar 

  16. Tang B, Li Z, Liu Z, Callewaert F, Aydin K (2016) Broadband asymmetric light transmission through tapered metallic gratings at visible frequencies. Sci Rep 6:32577

    Article  Google Scholar 

  17. Serebryannikov AE (2009) One-way diffraction effects in photonic crystal gratings made of isotropic materials. Phys Rev B 80(15):13

    Article  Google Scholar 

  18. Lu C, Hu X, Yang H, Gong Q (2011) Ultrahigh-contrast and wideband nanoscale photonic crystal all-optical diode. Opt Lett 36:4668–4670

    Article  Google Scholar 

  19. Wang C, Zhou CZ, Li ZY (2011) On-chip optical diode based on silicon photonic crystal heterojunctions. Opt Express 19(27):26948–26955

    Article  CAS  Google Scholar 

  20. Khavasi A, Rezaei M, Fard AP, Mehrany K (2013) A heuristic approach to the realization of the wide-band optical diode effect in photonic crystal waveguides. J Opt 15:075501

    Article  Google Scholar 

  21. Zhang Y, Kan Q, Wang GP (2014) One-way optical transmission in silicon grating-photonic crystal structures. Opt Lett 39:4934–4937

    Article  CAS  Google Scholar 

  22. Zhang Y, Li D, Zeng C, Huang Z, Wang Y, Huang Q, Wu Y, Yu J, Xia J (2014) Silicon optical diode based on cascaded photonic crystal cavities. Opt. Lett. 39:1370–1373

    Article  CAS  Google Scholar 

  23. Fedotov VA, Mladyonov PL, Prosvirnin SL, Rogacheva AV, Chen Y, Zheludev NI (2006) Asymmetric propagation of electromagnetic waves through a planar chiral structure. Phys Rev Lett 97:167401

    Article  CAS  Google Scholar 

  24. Fedotov V, Schwanecke A, Zheludev N, Khardikov V, Prosvirnin S (2007) Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures. Nano Lett 7:1996–1999

    Article  CAS  Google Scholar 

  25. Schwanecke AS, Fedotov VA, Khardikov VV, Prosvirnin SL, Chen Y, Zheludev NI (2008) Nanostructured metal film with asymmetric optical transmission. Nano Lett 8(9):2940–2943

    Article  CAS  Google Scholar 

  26. Singh R, Plum E, Menzel C, Rockstuhl C, Azad AK, Cheville RA, Lederer F, Zhang W, Zheludev NI (2009) Terahertz metamaterial with asymmetric transmission. Phys Rev B 80:153104

    Article  Google Scholar 

  27. Menzel C, Helgert C, Rockstuhl C, Kley EB, Tünnermann A, Pertsch T, Lederer F (2010) Asymmetric transmission of linearly polarized light at optical metamaterials. Phys Rev Lett 104:253902

    Article  CAS  Google Scholar 

  28. Mutlu M, Akosman AE, Serebryannikov AE, Ozbay E (2012) Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling. Phys Rev Lett 108(21):213905

    Article  Google Scholar 

  29. Kenanakis G, Xomalis A, Selimis A, Vamvakaki M, Farsari M, Kafesaki M, Soukoulis CM, Economou EN (2015) Three-dimensional infrared metamaterial with asymmetric transmission. ACS Photonics 2:287–294

    Article  CAS  Google Scholar 

  30. Shen B, Polson R, Menon R (2015) Integrated digital metamaterials enable ultra-compact optical diodes. Opt Express 23(8):10847–10855

    Article  CAS  Google Scholar 

  31. Xu T, Lezec HJ (2014) Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial. Nat Commun 5:4141

    Article  CAS  Google Scholar 

  32. Zhang L, Hao J, Qiu M, Zouhdi S, Yang J, Qiu C (2014) Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array. Nanoscale 6:12303–12309

    Article  CAS  Google Scholar 

  33. Zhang L, Mei S, Huang K, Qiu CW (2016) Advances in full control of electromagnetic waves with metasurfaces. Adv Opt Mater 4:818–833

    Article  CAS  Google Scholar 

  34. Moharam MG, Gaylord TK (1983) Three-dimensional vector coupled-wave analysis of planar-grating diffraction. J Opt Soc Am 1917–1983(73):1105–1112

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) (11604227) and International Visiting Program for Excellent Young Scholars of SCU (20181504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yidong Hou.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wu, X., Hu, Q. et al. Bidirectional Edge Asymmetric Light Transmission in Metal/Dielectric Device Based on Asymmetric Diffraction. Plasmonics 16, 1827–1834 (2021). https://doi.org/10.1007/s11468-020-01339-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01339-9

Keywords

Navigation