Skip to main content
Log in

Changes in the Magnetic Structure upon Varying the Magnetic Layer Thickness in [Tb–Co/Si]n Films

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The magnetic properties of the [Tb–Co/Si]n films are studied at temperatures of 5–300 K. The regularities of changing the effective magnetic moment of terbium and the average magnetic moment of cobalt with decreasing magnetic layer thickness are determined. In this case, interlayer interfaces are shown to play the active role. A decrease in the Tb–Co layer thickness is accompanied by an increase in the opening angle of sperimagnetic cone and the transition from the sperimagnetic to speromagetic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. Wang, Y. L. W. van Hees, R. Lavrijsen, W. Zhao, and B. Koopmans, “Enhanced all-optical switching and domain wall velocity in annealed synthetic-ferrimagnetic multilayers,” Appl. Phys. Lett. 117, 022408-5 (2020).

    Article  CAS  Google Scholar 

  2. R. S. Zavornitsyn, L. I. Naumova, M. A. Milyaev, M. V. Makarova, T. P. Krinitsina, V. V. Proglyado, and V. V. Ustinov, “Noncollinear magnetic order in a dysprosium layer and magnetotransport properties of a spin valve containing the CoFe/Dy/CoFe structure,” Phys. Met. Metallogr. 121, No. 7, 624–630 (2020).

    Article  CAS  Google Scholar 

  3. L. I. Naumova, M. A. Milyaev, R. S. Zavornitsyn, T. P. Krinitsina, T. A. Chernyshova, V. V. Proglyado, and V. V. Ustinov, “Magnetoresistive properties of CoFe/Cu/CoFe/Dy pseudo spin valves under conditions of interdiffusion of dysprosium and CoFe ferromagnetic alloy layers,” Phys. Met. Metallogr. 120, No. 5, 429–435 (2019).

    Article  CAS  Google Scholar 

  4. A. B. Drovosekov, D. I. Kholin, and N. M. Kreines, “Magnetic properties of layered ferrimagnetic structures based on Gd and transition 3d metals,” Zh. Eksp. Teor. Fiz. 158, No. 1, 151–163 (2020).

    Article  Google Scholar 

  5. A. V. Svalov, G. V. Kurlyandskaya, K. G. Balymov, and V. O. Vas’kovskii, “Spin valves based on amorphous ferrimagnetic Gd–Co films,” Phys. Met. Metallogr. 117, No. 9, 876–882 (2016).

    Article  CAS  Google Scholar 

  6. C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, 047601–3 (2007).

    Article  CAS  Google Scholar 

  7. V. V. Yurlov, K. A. Zvezdin, G. A. Kichin, M. D. Davydova, A. E. Tseplina, Ngo Trong Hai, Jong-Ching Wu, Sheng-Zhe Ciou, Yi-Ru Chiou, Lin-Xiu Ye, Te-Ho Wu, Ramesh Chandra Bhatt, and A. K. Zvezdin, “Magnetization switching by nanosecond pulse of electric current in thin ferrimagnetic film near compensation temperature,” Appl. Phys. Lett. 116, 222401-5 (2020).

    Article  CAS  Google Scholar 

  8. R. Q. Zhang, L. Y. Liao, X. Z. Chen, T. Xu, L. Cai, M. H. Guo, Hao Bai, L. Sun, F. H. Xue, J. Su, X. Wang, C. H. Wan, Hua Bai, Y. X. Song, R. Y. Chen, N. Chen, W. J. Jiang, X. F. Kou, J. W. Cai, H. Q. Wu, F. Pan, and C. Song, “Current-induced magnetization switching in a CoTb amorphous single layer,” Phys. Rev. B 101, 214418–6 (2020).

    Article  CAS  Google Scholar 

  9. J. Zhang, X. Zhang, H. Chen, Y. Guang, X. Zeng, G. Yu, S. Zhang, Y. Liu, J. Feng, Y. Zhao, Y. Zhou, X. Qiu, X. Han, Y. Peng, and X. Zhang, “Formation and magnetic-field stability of magnetic dipole skyrmions and bubbles in a ferrimagnet,” Appl. Phys. Lett. 116, 142404–5 (2020).

    Article  CAS  Google Scholar 

  10. J. M. D. Coey, J. Chappert, J. P. Rebouillat, and T. S. Wang, “Magnetic structure of an amorphous rare-earth transition-metal alloy,” Phys. Rev. Lett. 36, 1061–1064 (1976).

    Article  CAS  Google Scholar 

  11. M. Gottwald, M. Hehn, F. Montaigne, D. Lacour, G. Lengaigne, S. Suire, and S. Mangin, “Magnetoresistive effects in perpendicularly magnetized Tb–Co alloy based thin films and spin valves,” J. Appl. Phys. 111, 083904-4 (2012).

    Article  Google Scholar 

  12. V. O. Vas’kovskii, O. A. Adanakova, K. G. Balymov, N. A. Kulesh, A. V. Svalov, and E. A. Stepanova, “Specific features of the formation of atomic magnetic moments in amorphous films Re−Co (Re = La, Gd, Tb),” Phys. Solid State 57, No. 6, 1125–1130 (2015).

    Google Scholar 

  13. J. Yu, L. Liu, J. Deng, C. Zhou, H. Liu, F. Poh, and J. Chen, “Topological Hall effect in ferrimagnetic CoTb single layer,” J. Magn. Magn. Mater. 487, 165316-7 (2019).

    Article  CAS  Google Scholar 

  14. K. Ueda, M. Mann, C.-F. Pai, A.-J. Tan, and G. S. D. Beach, “Spin-orbit torques in Ta/TbxCo100 – x ferrimagnetic alloy films with bulk perpendicular magnetic anisotropy,” Appl. Phys. Lett. 109, 232403-5 (2016).

    Article  Google Scholar 

  15. A. V. Svalov, E. V. Kudyukov, K. G. Balymov, E. A. Stepanova, V. O. Vas’kovskiy, A. Larranaga, and G. V. Kurlyandskaya, “Thickness dependence of magnetic properties of Tb–Co/Ti and Tb–Co/Si multilayers,” Phys. Met. Metallogr. 120, No. 13, 1260–1265 (2019).

    Article  CAS  Google Scholar 

  16. A. V. Svalov, V. O. Vas’kovskiy, and G. V. Kurlyandskaya, “Influence of the size and structural factors on the magnetism of multilayer films based on 3d and 4f metals,” Phys. Met. Metallogr. 118, No. 13, 1263–1299 (2017).

    Article  CAS  Google Scholar 

  17. L. J. Tao, S. Kirkpatrick, R. J. Gambino, and J. J. Cuomo, “Charge transfer and the magnetic properties of amorphous Gd0.33Co0.67,” Solid State Commun. 13, No. 9, 1491–1494 (1973).

    Article  CAS  Google Scholar 

  18. A. R. Wildes and N. Cowlam, “Sperimagnetism in Fe78Er5B17 and Fe64Er19B17 metallic glasses: I. Moment values and non-collinear components,” J. Phys.: Condens. Matter. 23, 496004–9 (2011).

    CAS  Google Scholar 

  19. B. Hebler, A. Hassdenteufel, P. Reinhardt, H. Karl, and M. Albrecht, “Ferrimagnetic Tb–Fe alloy thin films: composition and thickness dependence of magnetic properties and all-optical switching,” J. Front. Mater. 3, 8 (2016).

    Google Scholar 

  20. S. Mader and A. S. Nowick, “Metastable Co–Au alloys: example of an amorphous ferromagnet,” Appl. Phys. Lett. 7, 57–59 (1965).

    Article  CAS  Google Scholar 

  21. V. O. Vas’kovskii, G. S. Patrin, D. A. Velikanov, P. A. Savin, A. V. Svalov, A. A. Yuvchenko, and N. N. Shchegoleva, “Magnetic hysteresis of Co/Si multilayers with variable thickness parameters,” Phys. Met. Metallogr. 103, No. 3, 278–283 (2007).

    Article  Google Scholar 

  22. R. Hasegawa, B. E. Argyle, and L. -J. Tao, “Temperature dependence of magnetization in amorphous Gd–Co–Mo films,” AIP Conf. Proc. 24, 110–112 (1975).

    Article  Google Scholar 

  23. A. V. Svalov, O. A. Adanakova, V. O. Vas’kovskiy, K. G. Balymov, A. Larranaga, G. V. Kurlyandskaya, R. Della Pace Domingues Della Pace, and C. C. Plá Cid, “Thickness dependence of magnetic properties of thin amorphous ferrimagnetic rare earth–transition metal multilayers,” J. Magn. Magn. Mater. 459, 57–60 (2018).

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 18-72-10044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Svalov.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svalov, A.V., Makarochkin, I.A., Kudyukov, E.V. et al. Changes in the Magnetic Structure upon Varying the Magnetic Layer Thickness in [Tb–Co/Si]n Films. Phys. Metals Metallogr. 122, 115–120 (2021). https://doi.org/10.1134/S0031918X21020095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21020095

Keywords:

Navigation