Skip to main content
Log in

Study of the Effect of Carbon on the Deformation Behavior and Microstructure of a Ti–10V–2Fe–3Al Alloy

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis are used to study the structure, phase composition, and deformation behavior of a titanium Ti–10V–2Fe–3Al alloy with different carbon contents. It is shown that as the carbon content in the alloy increases to the maximum carbon solubility, the dispersity of the secondary α-phase increases and, therefore, the strength of the alloy increases. After reaching the carbon solubility limit, titanium carbide particles are observed in the alloy structure; the morphology of the particles and their sizes are similar to those of the primary α-phase. The titanium carbide particles do not affect the strength and plasticity characteristics of the alloy during tensile tests and retain their initial shape after deformation. At the stage of strain localization, titanium carbide particles are sites of micropore nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. R. Boyer and R. D. Briggs, “The use of β titanium alloys in the aerospace industry,” J. Mater. Eng. Perform. 14, No. 6, 681–685 (2005).

    Article  CAS  Google Scholar 

  2. J. D. Cotton, R. D. Briggs, R. R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, and J. C. Fanning, “State of the art in beta titanium alloys for airframe applications,” JOM 67, No. 6. 1281–1303 (2015).

    Article  CAS  Google Scholar 

  3. Titanium alloy forgings 10V–2Fe–3Al, Aerospace Material Specification, ASM4984 (1987).

  4. H. R. Ogden and R. I. Jaffee, Titanium Metallurgical Laboratory Report No. 20 (Ohio, 1955).

  5. H. Conrad, “Effect of interstitial solutes on the strength and ductility of titanium,” Prog. Mater. Sci. 26, 123–403 (1981).

    Article  CAS  Google Scholar 

  6. G. Cam, H. M. Flower, and D. R. F. West, “Constitution of Ti–Al–C alloys in temperature range 1250–750°C,” Mater. Sci. Technol. 7, No. 6, 505–511 (1991).

    Article  CAS  Google Scholar 

  7. M. Yan, M. Qian, C. Kong, and M. S. Dargusch, “Impacts of trace carbon on the microstructure of as-sintered biomedical Ti–15Mo alloy and reassessment of the maximum carbon limit,” Acta Biomater. 10, No. 2, 1014–1023 (2014).

    Article  CAS  Google Scholar 

  8. E. K. Storms, Refractory Materials, V. 2. The Refractory Carbides (Academic Press, New York, 1967) p. 299.

  9. B. A. Kolachev, V. A. Livanov, and A. A. Bukhanova, Mechanical Properties of Titanium and its Alloys (Metallurgiya, Moscow, 1974) [in Russian].

    Google Scholar 

  10. O. P. Solonina and N. M. Ulyakova, “Effect of carbon on the mechanical properties and structure of titanium alloys,” Met. Sci. Heat Treat. 16, No. 4, 310–312 (1974).

    Article  Google Scholar 

  11. A. Szkliniarz, “Deformation of Ti–6Al–4V alloy with carbon,” Solid State Phenom. 176, 149–156 (2011).

    Article  CAS  Google Scholar 

  12. R. Banoth, R. Sarkar, A. Bhattacharjee, T. K. Nandy, and G. V. S. Nageswara Rao, “Effect of boron and carbon addition on microstructure and mechanical properties of metastable beta titanium alloys,” Mater. Des. 67, 50–63 (2015).

    Article  CAS  Google Scholar 

  13. A. Szkliniarz, “Effect of heat treatment on the microstructure and properties of Ti–8Al–1Mo–1V alloy with carbon addition,” Solid State Phenom. 229, 131–136 (2015).

    Article  Google Scholar 

  14. A. Szkliniarz, “Microstructure and properties of beta 21S alloy with 0.2 wt % of carbon,” Solid State Phenom. 246, 19–24 (2016).

    Article  Google Scholar 

  15. A. V. Zhelnina, A. G. Illarionov, and A. V. Trubochkin, “Study of interstitial impurities influence on properties of titanium alloy Ti–5Al–5V–5Mo–3Cr–1Zr,” Solid State Phenom. 284, 460–464 (2018).

    Article  Google Scholar 

  16. A. V. Zhelnina, A. G. Illarionov, M. S. Kalienko, A. A. Popov, and N. V. Schetnikov, “Effect of carbon content on the structure and mechanical properties of TI–10V–2Fe–3Al alloy,” XIX International scientific-technical conference “The Ural school-seminar of metal scientists-young researchers” KnE Engineering (2019) pp. 170–175.

  17. S. Zhang, W. Zeng, X. Gao, D. Zhou, and Y. Lai, “Role of titanium carbides on microstructural evolution of Ti–35V–15Cr–0.3 Si–0.1 C alloy during hot working,” J. Alloys Compd. 684, 201–210 (2016).

    Article  CAS  Google Scholar 

  18. Z. Q. Chen, D. Hu, M. H. Loretto, and X. Wu, “Influence of 0.2 wt % C on the aging response of Ti–15–3,” Mater. Sci. Technol. 20, No. 6, 756–764 (2004).

    Article  CAS  Google Scholar 

  19. L. -H. Chen, P. A. Blenkinsop, and I. P. Jones, “Effects of boron, carbon, and silicon additions on microstructure and properties of a Ti–15Mo based beta titanium alloy,” Mater. Sci. Technol. 17, No. 5, 573–580 (2001).

    Article  CAS  Google Scholar 

  20. R. Sarkar, P. Ghosal, K. Muraleedharan, T. K. Nandy, and K. K. Ray, “Effect of boron and carbon addition on microstructure and mechanical properties of Ti–15–3 alloy,” Mater. Sci. Eng., A 528, No. 13–14, 4819–4829 (2011).

    Article  Google Scholar 

  21. ASTM E8/8M–16a. Standard test methods for tension testing of metallic materials. American Society for Testing and Materials (Annual book of ASTM Standards, 2016).

  22. TOPAS. V3, General Profile and Structure Analysis Software for Powder Diffraction Data. User’s manual. Karlsruhe (Bruker AXS, Germany, 2005).

  23. N. Wain, X. Hao, G. A. Ravi, and X. Wu, “The influence of carbon on precipitation of α in Ti–5Al–5Mo–5V–3Cr,” Mater. Sci. Eng., A 527, Nos. 29–30, 7673–7683 (2010).

    Article  Google Scholar 

  24. M. S. Kalienko, A. V. Volkov, and A. V. Zhelninav, “Use of full-profile X-ray analysis for estimation of the dispersity of the secondary alpha phase in high-strength titanium alloys,” Crystallogr. Rep. 65, No. 3, 412–416 (2020).

    Article  CAS  Google Scholar 

  25. T. Hamajima, G. Lutjering, and S. Weissmann, “Importance of slip mode for dispersion-hardened β-titanium alloys,” Metall. Trans. 4, No. 3, 847–856 (1973).

    Article  CAS  Google Scholar 

  26. M. S. Kalienko, A. V. Volkov, V. A. Kropotov, M. A. Konovalov, and V. A. Dukhtanov, “Primary α-phase VST5553 alloy with lamellar structure properties effect,” Titanium’2011: Science and technology. Proc. 12-th Int. Conf. of Titanium (Beijing, 2011) pp. 1303–1311.

  27. G. Srinivasu, Y. Natraj, A. Bhattacharjee, T. K. Nandy, and G. V. S. Nageswara Rao, “Tensile and fracture toughness of high strength b Titanium alloy, Ti–10V–2Fe–3Al, as a function of rolling and solution treatment temperatures,” J. Mater. Des. 47, 323–330 (2013).

    Article  CAS  Google Scholar 

  28. N. J. Petch, “The cleavage strength of polycrystals,” J. Iron Steel Inst. 174, 25–28 (1953).

    CAS  Google Scholar 

  29. G. T. Terlinde, T. W. Duerig, and J. C. Williams, “Microstructure, tensile deformation, and fracture in aged Ti 10V–2Fe–3Al,” Metall. Trans. A 14, No. 10, 2101–2115 (1983).

    Article  Google Scholar 

  30. J. W. Hutchinson and V. Tvergaard, “Softening due to void nucleation in metals,” In Fracture Mechanics: Perspectives and Directions (Twentieth Symposium) (ASTM Int., 1989), pp. 61–83.

  31. N. R. Moody, W. M. Garrison, J. E. Costa, and J. E. Smugeresky, “The role of defect size on the fracture toughness of powder processed Ti–10V–2Fe–3Al,” Scr. Metall. 23, No. 7, 1147–1150 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zhelnina.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhelnina, A.V., Kalienko, M.S. & Shchetnikov, N.V. Study of the Effect of Carbon on the Deformation Behavior and Microstructure of a Ti–10V–2Fe–3Al Alloy. Phys. Metals Metallogr. 122, 154–160 (2021). https://doi.org/10.1134/S0031918X21020101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21020101

Keywords:

Navigation