Skip to main content
Log in

Effect of Phonon Focusing on the Drag Thermopower in Single-Crystal Potassium Nanowires at Low Temperatures

  • THEORY OF METALS
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The role of shear waves and the effect of phonon focusing on the anisotropy of the thermopower of the electron–phonon drag in single-crystal potassium nanowires at low temperatures are analyzed in this work. The deformation potential theory is used for the longitudinal components of elastic modes. For the shear components of vibrational modes, the electron–phonon interaction constant is used, which was determined previously from comparing the results of calculating the thermoelectric power with experimental data for bulk potassium crystals. It is shown that shear waves make a significant contribution to the drag thermopower of nanowires. In the regime of the Knudsen phonon gas flow for nanowires with a cross-section side D = 5 × 10–6 cm, the contribution of the slow transverse mode t2 with allowance for only the longitudinal component in the [111] directions turned out to be 32% smaller and, with allowance for the shear component of the t2 mode, 12% greater than the contribution of longitudinal phonons. Directions corresponding to the maximum and minimum values of the drag thermopower of nanowires are determined. It is shown that, under conditions of competition between the boundary and bulk mechanisms of phonon relaxation with an increase in the cross section of nanowires, the anisotropy of the drag thermopower changes nonmonotonically. It exceeds 30% not only in the Knudsen phonon gas flow regime, but also when the sample thickness is two orders of magnitude greater. This makes the anisotropy of thermopower available for experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. I. I. Kuleev and I. G. Kuleev, “Phonon focusing and anisotropy of the lattice thermal conductivity of potassium crystals at low temperatures,” Phys. Met. Metallogr. 119, 1141–1147 (2018).

    Article  Google Scholar 

  2. I. I. Kuleev and I. G. Kuleev, “Role of quasi-longitudinal and quasi-transverse phonons in the drag thermopower of potassium crystals at low temperatures,” J. Exp. Theor. Phys. 129, 46–58 (2019).

    Article  Google Scholar 

  3. I. I. Kuleev and I. G. Kuleev, “Drag thermopower in nanowires and bulk potassium crystals under the conditions of competition between the boundary and bulk mechanisms of phonon relaxation,” J. Phys.: Condens. Matter 31, 375701(13 pp) (2019).

  4. I. I. Kuleev and I. G. Kuleev, “Effect of anisotropy of elastic energy on the electron–phonon drag and temperature dependences of thermal emf in potassium crystals at low temperatures,” Phys. Met. Metallogr. 120, 1033–1039 (2019).

    Article  CAS  Google Scholar 

  5. Dzh. Zaiman, Electrons and Phonons (IIL, Moscow, 1962) [in Russian].

  6. F. Blatt, Physics of Electron Conductivity in Solids (IIL, Moscow, 1971) [in Russian].

    Google Scholar 

  7. A. I. Anselm, Introduction to Semiconductor Theory (Prentice-Hall, New Jersey, 1981).

    Google Scholar 

  8. D. K. C. MacDonald, W. B. Pearson and I. M. Templeton, “Thermo-electricity at low temperatures. VIII. Thermo-Electricity of the Alkali Metals Below 2 K,” Proc. R. Soc. Lond., Ser. A 256, 334–358 (1960).

  9. A. M. Guenault and D. K. C. MacDonald, “Electron and phonon scattering thermoelectricity in potassium and alloys at very low temperatures,” Proc. R. Soc. Lond., Ser. A 264, 41–59 (1961).

  10. M. R. Stinson, R. Fletcher, and C. R. Leavens, “Thermomagnetic and thermoelectric properties of potassium,” Phys. Rev. B 20, 3970–3990 (1979).

    Article  CAS  Google Scholar 

  11. R. Fletcher, “Scattering of phonons by dislocations in potassium,” Phys. Rev. B 36, 3042–3051 (1987).

    Article  CAS  Google Scholar 

  12. F. J. Blatt, P. A. Schroeder, C. L. Foiles, and D. Greig, Thermoelectric Power of Metals (Plenum press, New York and London, 1976).

    Book  Google Scholar 

  13. I. I. Kuleev and I. G. Kuleev, “The role of shear waves in electron–phonon drag in potassium crystals at low temperatures,” Phys. Met. Metallogr. 121, No. 10, 921–928 (2020).

    Article  CAS  Google Scholar 

  14. J. M. Zyman, “The thermoelectric power of the alkali metals at low temperatures,” Philos. Mag. 4, 371–379 (1959).

    Article  Google Scholar 

  15. C. Herring and E. Vogt, “Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering,” Phys. Rev. 101, 944–961 (1956).

    Article  CAS  Google Scholar 

  16. P. Yu. M. Kardona, Fundamentals of Physics of Semiconductors (Fizmatlit, Moscow, 2002), p. 560.

    Google Scholar 

  17. L. E. Gurevich, “Thermoelectric properties of conductors.I,” Zh. Eksp. Teor. Fiz. 16,193 (1946).

    CAS  Google Scholar 

  18. I. G. Kuleyev, I. I. Kuleyev, A. N. Taldenkov, A. V. Inyushkin, V. I. Ozhogin, K. M. Itoh, and E. E. Haller, “Normal processes of phonon-phonon scattering and the drag thermal EMF in germanium crystals with isotopic disorder,” J. Exp. Theor. Phys. 96, 1078 (2003).

    Article  Google Scholar 

  19. G. D. Mahan, L. Lindsay, and D. A. Broido, “The Seebeck coefficient and phonon drag in silicon,” J. Appl. Phys. 116, 245102 (2014).

    Article  Google Scholar 

  20. Fedorov, F.I., Theory of Elastic Waves in Crystals (Nauka, Moscow, 1965).

    Google Scholar 

  21. B. Truel, C. Elbaum, and B. B. Chick, Ultrasonic Methods in Solid State Physics (Academic Press, New York−London, 1969), p. 307.

  22. I. G. Kuleev and I. I. Kuleev, “Elastic waves in cubic crystals with positive or negative anisotropy of second-order elastic moduli,” Phys. Solid State 49, No. 3, 437–444 (2007).

    Article  CAS  Google Scholar 

  23. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, A. Majumdar, “Thermal conductivity of individual silicon nanowires,” Appl. Phys. Lett. 83, 2934–2936 (2003).

    Article  CAS  Google Scholar 

  24. I. G. Kuleev, I. I. Kuleev, S. M. Bakharev, and V. V. Ustinov, Phonon Focusing and Phonon Transport in Single Crystal Nanostructures (UMTs UPI, Yekaterinburg, 2018).

Download references

Funding

This work was carried out within the state assignment from the Ministry of Education and Science of the Russian Federation (topic “Function”, no. AAAA-A19-119012990095-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Kuleyev.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuleyev, I.I., Kuleyev, I.G. Effect of Phonon Focusing on the Drag Thermopower in Single-Crystal Potassium Nanowires at Low Temperatures. Phys. Metals Metallogr. 122, 75–82 (2021). https://doi.org/10.1134/S0031918X21020071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21020071

Keywords:

Navigation