Skip to main content
Log in

Finding optimal solutions to several gray pattern instances

  • Short Communication
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper we compare two new binary linear formulations to a standard quadratic binary program for the gray pattern problem and solved all three by the Gurobi solver. One formulation performed significantly better and obtained seven optimal solutions that were not proven optimal before. It is interesting that the formulation that performed best is based on significantly more variables and constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Adams, W.P., Forrester, R.J.: A simple recipe for concise mixed 0–1 linearizations. Oper. Res. Lett. 33, 55–61 (2005)

    Article  Google Scholar 

  2. Burkard, R.E., Karisch, S.E., Rendl, F.: Qaplib-a quadratic assignment problem library. J. Global Optim. 10, 391–403 (1997)

    Article  MathSciNet  Google Scholar 

  3. CPLEX, IBM ILOG (2019). 12.10: User’s Manual for CPLEX. International Business Machines Corporation, Incline Village, NV

  4. Drezner, Z.: Finding a cluster of points and the grey pattern quadratic assignment problem. OR Spectrum 28, 417–436 (2006)

    Article  MathSciNet  Google Scholar 

  5. Drezner, Z.: The quadratic assignment problem. In: Laporte, G., Nickel, S., da Gama, F.S. (eds.) Location Science, pp. 345–363. Springer, Cham (2015)

    Google Scholar 

  6. Drezner, Z., Hahn, P.M., Taillard, É.D.: Recent advances for the quadratic assignment problem with special emphasis on instances that are difficult for meta-heuristic methods. Ann. Oper. Res. 139, 65–94 (2005)

    Article  MathSciNet  Google Scholar 

  7. Drezner, Z., Misevičius, A., Palubeckis, G.: Exact algorithms for the solution of the grey pattern quadratic assignment problem. Math. Methods Oper. Res. 82, 85–105 (2015)

    Article  MathSciNet  Google Scholar 

  8. Gurobi Optimization Incorporate (2018). Gurobi optimizer reference manual. URL http://www.gurobi.com

  9. Hahn, P.M., Zhu, Y.-R., Guignard, M., Hightower, W.L., Saltzman, M.J.: A level-3 reformulation-linearization technique-based bound for the quadratic assignment problem. Inf. J. Comput. 24, 202–209 (2012)

    Article  MathSciNet  Google Scholar 

  10. Kang, H.R.: Digital color halftoning. SPIE press (1999)

  11. Kuo, C.-C., Glover, F., Dhir, K.S.: Analyzing and modeling the maximum diversity problem by zero-one programming. Decision Sci. 24, 1171–1185 (1993)

    Article  Google Scholar 

  12. Kuznetsov, Y.V.: Principles of Image Printing Technology. Springer, Cham (2021)

    Book  Google Scholar 

  13. Lau, D.L., Arce, G.R.: Modern Digital Halftoning. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  14. Loiola, E.M., de Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.: A survey for the quadratic assignment problem. Europ. J. Oper. Res. 176, 657–690 (2007)

    Article  MathSciNet  Google Scholar 

  15. Martí, R., Gallego, M., Duarte, A., Pardo, E.G.: Heuristics and metaheuristics for the maximum diversity problem. J. Heuristics 19, 591–615 (2013)

    Article  Google Scholar 

  16. Misevicius, A., Palubeckis, G., Drezner, Z.: Hierarchicity-based (self-similar) hybrid genetic algorithm for the grey pattern quadratic assignment problem. Memetic Comput. (2021). https://doi.org/10.1007/s12293-020-00321-6

    Article  Google Scholar 

  17. Palubeckis, G.: Iterated tabu search for the maximum diversity problem. Appl. Math. Comput. 189, 371–383 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Parreño, F., Álvarez-Valdés, R., Martí, R.: Measuring diversity a review and an empirical analysis. Europ. J. Oper. Res. (2020). https://doi.org/10.1016/j.ejor.2020.07.053

    Article  MATH  Google Scholar 

  19. Prokopyev, O.A., Kong, N., Martinez-Torres, D.L.: The equitable dispersion problem. Europ. J. Oper. Res. 197(1), 59–67 (2009)

    Article  MathSciNet  Google Scholar 

  20. Taillard, É.D.: Comparison of iterative searches for the quadratic assignment problem. Location Sci. 3, 87–105 (1995)

    Article  Google Scholar 

  21. Ulichney, R.: Digital halftoning. MIT press (1987)

  22. Wong, P.W., Memon, N.D.: Image processing for halftones. IEEE Signal Process. Magaz. 20, 59–70 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zvi Drezner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Let \(s^{(p)^*}=(s^*(1), s^*(2),\ldots , s^*(p))\) denote the optimal solution (the optimal configuration of p points in the rectangle of size \(n=n_1\times n_2\); in our case, \(n=64=8\times 8\)). Further, let \(n_1=n_2,~ p'=k^2\times p\) (without the loss of generality), \(k=1, 2,\ldots ,\) and let \(s^{(p')^{**}}=(s^{**}(1), s^{**}(2),\ldots , s^{**}(p'))\) correspond to the configuration of \(p'\) points in the rectangle (square) of size \(k^2\times n=k\times n_1\times k\times n_1\) – such that the rectangle of size \(k^2\times n\) is obtained from the rectangle of size n by replicating this rectangle \(k^2\) times. Then, there exists a solution denoted by \(s^{{(p')}^{***}}\) – such that the following statements hold: \(\frac{p'}{p}\times f(s^{{(p)}^*} )\le f\left( s^{(p')^{***}}\right) \), \(f\left( s^{(p')^{**}}\right) =\omega \times f\left( s^{(p')^{***}}\right) \); here \(\frac{p'}{p}=k^2\), \(\omega (\omega \ge 1)\) is an empirical constant close or equal to 1, and \(f\left( s^{(p)^*}\right) , f\left( s^{(p')^{**}}\right) , f\left( s^{(p')^{***}}\right) \) denote the objective function values corresponding, respectively, to \(s^{(p)^*}, s^{(p')^{**}}, s^{(p')^{***}}.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drezner, Z., Kalczynski, P., Misevičius, A. et al. Finding optimal solutions to several gray pattern instances. Optim Lett 16, 713–722 (2022). https://doi.org/10.1007/s11590-021-01732-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-021-01732-1

Keywords

Navigation