Skip to main content
Log in

Preparation of polysulfone-based block copolymer ultrafiltration membranes by selective swelling and sacrificing nanofillers

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Selective swelling of block copolymers of polysulfone-b-poly(ethylene glycol) is an emerging strategy to prepare new types of polysulfone ultrafiltration membranes. Herein, we prepared nanoporous polysulfone-b-poly(ethylene glycol) ultrafiltration membranes by selective swelling and further promoted their porosity and ultrafiltration performances by using CaCO3 nanoparticles as the sacrificial nanofillers. Different contents of CaCO3 nanoparticles were doped into the solution of polysulfone-b-poly(ethylene glycol), and thus obtained suspensions were used to prepare both self-supported and bi-layered composite structures. Selective swelling was performed on the obtained block copolymer structures in the solvent pair of ethanol/acetone, producing nanoporous membranes with poly(ethylene glycol) lined along pore walls. The CaCO3 nanoparticles dispersed in polysulfone-b-poly(ethylene glycol) were subsequently etched away by hydrochloric acid and the spaces initially occupied by CaCO3 provided extra pores to the block copolymer layers. The porosity of the membranes was increased with increasing CaCO3 content up to 41%, but further increase in the CaCO3 content led to partial collapse of the membrane. The sacrificial CaCO3 particles provided extra pores and enhanced the connectivity between adjacent pores. Consequently, the membranes prepared under optimized conditions exhibited up to 80% increase in water permeance with slight decrease in rejection compared to neat membranes without the use of sacrificial CaCO3 particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amanda A, Kulprathipanja A, Toennesen M, Mallapragada S K. Semicrystalline poly(vinyl alcohol) ultrafiltrationmembranes for bioseparations. Journal of Membrane Science, 2000, 176(1): 87–95

    Article  CAS  Google Scholar 

  2. Lee A, Elam J W, Darling S B. Membrane materials for water purification: design, development, and application. Environmental Science. Water Research & Technology, 2016, 2(1): 17–42

    Article  CAS  Google Scholar 

  3. Castro-Muñoz R, Boczkaj G, Gontarek E, Cassano A, Fíla V. Membrane technologies assisting plant-based and agro-food byproducts processing: a comprehensive review. Trends in Food Science & Technology, 2020, 95: 219–232

    Article  Google Scholar 

  4. Boulkrinat A, Bouzerara F, Harabi A, Harrouche K, Stelitano S, Russo F, Galiano F, Figoli A. Synthesis and characterization of ultrafiltration ceramic membranes used in the separation of macromolecular proteins. Journal of the European Ceramic Society, 2020, 40(15): 5967–5973

    Article  CAS  Google Scholar 

  5. Premnath S, Agarwal G P. Single stage ultrafiltration for enhanced reverse selectivity in a binary protein system. Separation Science and Technology, 2017, 52(13): 2161–2172

    Article  CAS  Google Scholar 

  6. Park J Y, Acar M H, Akthakul A, Kuhlman W, Mayes A M. Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes. Biomaterials, 2006, 27(6): 856–865

    Article  CAS  Google Scholar 

  7. Yang Y N, Zhang H X, Wang P, Zheng Q Z, Li J. The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane. Journal of Membrane Science, 2007, 288(1–2): 231–238

    Article  CAS  Google Scholar 

  8. Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li Q L, Alvarez P J J. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Research, 2009, 43(3): 715–723

    Article  CAS  Google Scholar 

  9. Rana D, Matsuura T. Surface modifications for antifouling membranes. Chemical Reviews, 2010, 110(4): 2448–2471

    Article  CAS  Google Scholar 

  10. Sheldon J M, Reed I M, Hawes C R. The fine-structure of ultrafiltration membranes. 2. Protein fouled membranes. Journal of Membrane Science, 1991, 62(1): 87–102

    Article  CAS  Google Scholar 

  11. Mauter M S, Wang Y, Okemgbo K C, Chinedum O O, Giannelis E P, Elimelech M. Antifouling ultrafiltration membranes via postfabrication grafting of biocidal nanomaterials. ACS Applied Materials & Interfaces, 2011, 3(8): 2861–2868

    Article  CAS  Google Scholar 

  12. Chen Y Q, Wei M J, Wang Y. Upgrading polysulfone ultrafiltration membranes by blending with amphiphilic block copolymers: beyond surface segregation. Journal of Membrane Science, 2016, 505: 53–60

    Article  CAS  Google Scholar 

  13. Wang N, Wang T, Hu Y X. Tailoring membrane surface properties and ultrafiltration performances via the self-assembly of polyethylene glycol-block-polysulfone-block-polyethylene glycol block copolymer upon thermal and solvent annealing. ACS Applied Materials & Interfaces, 2017, 9(36): 31018–31030

    Article  CAS  Google Scholar 

  14. Wang Z G, Yao X P, Wang Y. Swelling-induced mesoporous block copolymer membranes with intrinsically active surfaces for size-selective separation. Journal of Materials Chemistry, 2012, 22(38): 20542–20548

    Article  CAS  Google Scholar 

  15. Guo L M, Wang Z G, Wang Y. Selective swelling of block copolymers for porous nanostructures. World Scientific Reference of Hybrid Materials, 2018, 1(15): 45–118

    Google Scholar 

  16. Zhao W, Su Y L, Li C, Shi Q, Ning X, Jiang Z Y. Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic F127 as both surface modifier and pore-forming agent. Journal of Membrane Science, 2008, 318(1–2): 405–412

    Article  CAS  Google Scholar 

  17. Wang S F, Feng J Y, Xie Y, Tian Z Z, Peng D D, Wu H, Jiang Z Y. Constructing asymmetric membranes via surface segregation for efficient carbon capture. Journal of Membrane Science, 2016, 500: 25–32

    Article  CAS  Google Scholar 

  18. Zhao Y F, Zhang P B, Sun J, Liu C J, Zhu L P, Xu Y Y. Electrolyte-responsive polyethersulfone membranes with zwitterionic polyethersulfone-based copolymers as additive. Journal of Membrane Science, 2016, 510: 306–313

    Article  CAS  Google Scholar 

  19. Hancock L F, Fagan S M, Ziolo M S. Hydrophilic, semipermeable membranes fabricated with poly(ethylene oxide)-polysulfone block copolymer. Biomaterials, 2000, 21(7): 725–733

    Article  CAS  Google Scholar 

  20. Du R K, Gao B J, Li Y B. Hydrophilic polysulfone film prepared from polyethylene glycol monomethylether via coupling graft. Applied Surface Science, 2013, 274: 288–294

    Article  CAS  Google Scholar 

  21. Wang Y. Nondestructive creation of ordered nanopores by selective swelling of block copolymers: toward homoporous membranes. Accounts of Chemical Research, 2016, 49(7): 1401–1408

    Article  CAS  Google Scholar 

  22. Yan N N, Wang Y. Selective swelling induced pore generation of amphiphilic block copolymers: the role of swelling agents. Journal of Polymer Science. Part B, Polymer Physics, 2016, 54(9): 926–933

    Article  CAS  Google Scholar 

  23. Wang Y, Li F B. An emerging pore-making strategy: confined swelling-induced pore generation in block copolymer materials. Advanced Materials, 2011, 23(19): 2134–2148

    Article  CAS  Google Scholar 

  24. Shar J A, Obey T M, Cosgrove T. Adsorption studies of polyethers. Part 1. Adsorption onto hydrophobic surfaces. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 1998, 136(1–2): 21–33

    Article  CAS  Google Scholar 

  25. Zhou J M, Wang Y. Selective swelling of block copolymers: an upscalable greener process to ultrafiltration membranes? Macromolecules, 2020, 53(1): 5–17

    Article  CAS  Google Scholar 

  26. Yang H, Zhou J M, Wang Z G, Shi X S, Wang Y. Selective swelling of polysulfone/poly(ethylene glycol) block copolymer towards fouling-resistant ultrafiltration membranes. Chinese Journal of Chemical Engineering, 2020, 28(1): 98–103

    Article  CAS  Google Scholar 

  27. Arthanareeswaran G, Sriyamuna Devi T K, Raajenthiren M. Effect of silica particles on cellulose acetate blend ultrafiltration membranes: Part I. Separation and Purification Technology, 2008, 64(1): 38–47

    Article  CAS  Google Scholar 

  28. Emadzadeh D, Lau W J, Matsuura T, Ismail A F, Rahbari-Sisakht M. Synthesis and characterization of thin film nanocomposite forward osmosis membrane with hydrophilic nanocomposite support to reduce internal concentration polarization. Journal of Membrane Science, 2014, 449: 74–85

    Article  CAS  Google Scholar 

  29. Emadzadeh D, Lau W J, Matsuura T, Rahbari-Sisakht M, Ismail A F. A novel thin film composite forward osmosis membrane prepared from PSf-TiO2 nanocomposite substrate for water desalination. Chemical Engineering Journal, 2014, 237: 70–80

    Article  CAS  Google Scholar 

  30. Ma N, Wei J, Qi S, Zhao Y, Gao Y B, Tang C Y Y. Nanocomposite substrates for controlling internal concentration polarization in forward osmosis membranes. Journal of Membrane Science, 2013, 441: 54–62

    Article  CAS  Google Scholar 

  31. Lai L L, Shao J, Ge Q Q, Wang Z B, Yan Y S. The preparation of zeolite NaA membranes on the inner surface of hollow fiber supports. Journal of Membrane Science, 2012, 409–410: 318–328

    Article  Google Scholar 

  32. Vilakati G D, Wong M C Y, Hoek E M V, Mamba B B. Relating thin film composite membrane performance to support membrane morphology fabricated using lignin additive. Journal of Membrane Science, 2014, 469: 216–224

    Article  CAS  Google Scholar 

  33. Deng C, Zhang Q G, Han G L, Gong Y, Zhu A M, Liu Q L. Ultrathin self-assembled anionic polymer membranes for superfast size-selective separation. Nanoscale, 2013, 5(22): 11028–11034

    Article  CAS  Google Scholar 

  34. Liu H Y, Liu L L, Yang C L, Li Z H, Xiao Q Z, Lei G T, Ding Y H. A hard-template process to prepare three-dimensionally macroporous polymer electrolyte for lithium-ion batteries. Electrochimica Acta, 2014, 121: 328–336

    Article  CAS  Google Scholar 

  35. Uchida E, Uyama Y, Ikada Y. Zeta potential of polycation layers grafted onto a film surface. Langmuir, 1994, 10(4): 1193–1198

    Article  CAS  Google Scholar 

  36. Wang Z G, Liu R, Yang H, Wang Y. Nanoporous polysulfones with in situ PEGylated surfaces by a simple swelling strategy using paired solvents. Chemical Communications, 2017, 53(65): 9105–9108

    Article  CAS  Google Scholar 

  37. Darling S B. Directing the self-assembly of block copolymers. Progress in Polymer Science, 2007, 32(10): 1152–1204

    Article  CAS  Google Scholar 

  38. Abetz V, Simon P F W. Phase behaviour and morphologies of block copolymers. Advances in Polymer Science, 2005, 189: 125–212

    Article  CAS  Google Scholar 

  39. Aimar P, Meireles M, Sanchez V. A contribution to the translation of retention curves into pore size distributions for sieving membranes. Journal of Membrane Science, 1990, 54(3): 321–338

    Article  CAS  Google Scholar 

  40. Calvo J I, Peinador R I, Prádanos P, Palacio L, Bottino A, Capannelli G, Hernández A. Liquid-liquid displacement porometry to estimate the molecular weight cut-off of ultrafiltration membranes. Desalination, 2011, 268(1–3): 174–181

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundations of China (Grant Nos. 21776126 and 21825803) are gratefully acknowledged. We also thank the support from the Program of Excellent Innovation Teams of Jiangsu Higher Education Institutions and the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianzhong Xia or Yong Wang.

Electronic Supplementary Material

11705_2021_2038_MOESM1_ESM.pdf

Preparation of polysulfone-based block copolymer ultrafiltration membranes by selective swelling and sacrificing nanofillers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zhou, J., Wang, Z. et al. Preparation of polysulfone-based block copolymer ultrafiltration membranes by selective swelling and sacrificing nanofillers. Front. Chem. Sci. Eng. 16, 745–754 (2022). https://doi.org/10.1007/s11705-021-2038-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2038-x

Keywords

Navigation