Skip to main content
Log in

Research on the Micro-Pore Structures of AAFAM

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The pore structure of alkali-activated fly ash mortar (AAFAM) under different mix ratios and curing system was measured by mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM). Based on the fractal theory, the integral shape dimension of the pore surface of the AAFAM is obtained and discussed its relationship with total porosity, proportion of gel pores, transition pore, capillary pores and macropores, average pore diameter, median pore diameter, pore surface area, pore size distribution, and the influence of mass ratio of alkali activators, curing temperature, and curing age on pore structures. In addition, data regression analysis (DRA) is a statistical tool and applied to study the relationship between microscopic pore parameters and the fractal dimension of the AAFAM mixtures. The results show that the fractal dimension of the AAFAM is between 2.6 and 2.9, and the pore size distribution has a linear relationship with the fractal dimension, and the internal pore diameter of the AAFAM will gradually decrease and AAFAM’s matrix gradually becomes denser and the microstructure integrity is more stable as the curing age and temperature increases, and the mechanical strength will be higher. The AAFAM mixture composed of Na2SiO3/NAOH with a mass ratio of 1.0 and 100% fly ash is considered the most suitable mixture. AAFAM can make full use of industrial by-products (fly ash) and seems to be a suitable candidate for green environmental protection materials for engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Juenger, M.C.G.; Winnefeld, F.; Provis, J.L.; Ideker, J.: Advances in alternative cementitious binders. Cem. Concr. Res. 41, 1232–1243 (2011). https://doi.org/10.1016/j.cemconres.2010.11.012

    Article  Google Scholar 

  2. Provis, J.L.; van Deventer, J.S.J.: Geopolymers: Structures, Processing, Properties and Industrial Applications, p. 448. Woodhead, Cambridge, UK (2009)

    Book  Google Scholar 

  3. Duxson, P.; Provis, J.L.; Lukey, G.C.; van Deventer, J.S.J.: The role of inorganic polymer technology in the development of ‘green concrete.’ Cem. Concr. Res. 37, 1590–1597 (2007). https://doi.org/10.1016/j.cemconres.2007.08.018

    Article  Google Scholar 

  4. Shekhovtsova, J.; Kovtun, M.; Kearsley, E.P.: Evaluation of short-and long-term properties of heat-cured alkali-activated fly ash concrete. Mag. Concr. Res. 67(16), 897–905 (2015)

    Article  Google Scholar 

  5. Cao, R.; Li, B.; You, N.; Zhang, Y.; Zhang, Z.: Properties of alkali-activated ground granulated blast furnace slag blended with ferronickel slag. Constr. Build. Mater. 192, 123–132 (2018). https://doi.org/10.1016/j.conbuildmat.2018.10.112

    Article  Google Scholar 

  6. You, N.; Li, B.; Cao, R.; Shi, J.; Chen, C.; Zhang, Y.: The influence of steel slag and ferronickel slag on the properties of alkali-activated slag mortar. Constr. Build. Mater. 227, 116614 (2019). https://doi.org/10.1016/j.conbuildmat.2019.07.340

    Article  Google Scholar 

  7. Provis, J.L.; Duxson, P.; van Deventer, J.S.J.: The role of particle technology in developing sustainable construction materials. Adv. Powder Technol. 21, 2–7 (2010). https://doi.org/10.1016/j.apt.2009.10.006

    Article  Google Scholar 

  8. Khan, M.S.H.; Kayali, O.: Chloride binding ability and the onset corrosion threat on alkali-activated GGBFS and binary blend pastes. Eur J Environ Civ Eng 22(8), 1023–1039 (2018)

    Article  Google Scholar 

  9. Gao, X.; Yu, Q.L.; Brouwers, H.J.H.: Assessing the porosity and shrinkage of alkali-activated slag-fly ash composites designed applying a packing model. Construct. Build. Mater. 119, 175–184 (2016)

    Article  Google Scholar 

  10. Lee, N.K.; Lee, H.K.: Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Construct. Build. Mater. 47, 1201–1209 (2013)

    Article  Google Scholar 

  11. Bakharev, T.: Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cement Concr. Res. 35(6), 1224–1232 (2005)

    Article  Google Scholar 

  12. Bakharev, T.: Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cem. Concr. Res. 35(6), 1224–1232 (2005). https://doi.org/10.1016/j.cemconres.2004.06.031

    Article  Google Scholar 

  13. Ryu, G.S.; Lee, Y.B.; Koh, K.T.; Chung, Y.S.: The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Construct. Build. Mater. 47, 409–418 (2013)

    Article  Google Scholar 

  14. Sarker, P.K.: Bond strength of reinforcing steel embedded in fly ash-based geopolymer concrete. Mater. Struct. 44(5), 1021–1030 (2011)

    Article  Google Scholar 

  15. Oh, J.E.; Moon, J.; Oh, S.-G.; Clark, S.M.; Monteiro, P.J.: Microstructural and compositional change of NaOH-activated high calcium fly ash by incorporating Na-aluminate and co-existence of geopolymeric gel and C-S–H (I). Cem. Concr. Res. 42(5), 673–685 (2012)

    Article  Google Scholar 

  16. Ahmaruzzaman, M.: A review on the utilization of fly ash. Progr. Energy. Comb. Sci. 36, 327–363 (2010)

    Article  Google Scholar 

  17. Duxson, P.; Provis, J.L.: Designing precursors for geopolymer cements. J. Am. Ceram. Soc. 91, 3864–3869 (2008)

    Article  Google Scholar 

  18. Zhang, Z.; Zhu, H.; Zhou, C.H.; Wang, H.: Geopolymer from kaolin in China: an overview. Appl. Clay Sci. 119, 31–41 (2016)

    Article  Google Scholar 

  19. Ma, Y.; Hu, J.; Ye, G.: The pore structure and permeability of alkali activated fly ash. Fuel 104, 771–780 (2013)

    Article  Google Scholar 

  20. Bernal, S.A.; Provis, J.L.; Rose, V.; De Guitiérrez, R.M.: Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem. Concr. Compos. 33, 46–54 (2011)

    Article  Google Scholar 

  21. Sagoe-Crentsil, K.; Weng, L.: Dissolution process, hydrolysis and condensation reactions during geopolymer synthesis: Part II. High Si/Al ratio systems. J. Mater. Sci. 42, 3007–3014 (2007)

    Article  Google Scholar 

  22. Duxson, P.; Mallicoat, S.W.; Lukey, G.C.; Krivem, W.M.; Van Deventer, J.S.J.: The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf. A 292, 8–20 (2007)

    Article  Google Scholar 

  23. Duan, P.; Yan, C.; Zhou, W.; Luo, W.; Shen, C.: An investigation of the microstructure and durability of a fluidized bed fly ash-metakaolin geopolymer after heat and acid exposure. Mater. Des. 74, 125–137 (2015)

    Article  Google Scholar 

  24. Lloyd, R.R.; Provis, J.L.; Smeaton, K.J.; Van Deventer, J.S.J.: Spatial distribution of pores in fly ash-based inorganic polymer gels visualized by Wood’s metal intrusion. Microporous Mesoporous Mater. 126, 32–39 (2009)

    Article  Google Scholar 

  25. Provis, J.L.; Myers, R.J.; White, C.E.; Rose, V.; Van Deventer, J.S.J.: X-ray microtomography shows pore structure and tortuosity in alkali-activated binders. Cem. Concr. Res. 42, 855–864 (2012)

    Article  Google Scholar 

  26. Zhang, Z.; Wang, H.; Zhu, Y.; Reid, A.; Provis, J.L.; Bullen, F.: Using fly ash to partially substitute metakaolin in geopolymer synthesis. Appl. Clay Sci. 88–89, 194–201 (2014)

    Article  Google Scholar 

  27. Mangat, P.; Lambert, P.: Sustainability of alkali-activated cementitious materials and geopolymers, in: Sustain. Constr. Mater., Elsevier Ltd, 2016, 459–476https://doi.org/10.1016/B978-0-08-100370-1.00018-4.

  28. Neville, A.M.: Properties of Concrete. Pearson Education Limited, London (2011)

    Google Scholar 

  29. Kumar, R.; Bhattacharjee, B.: Assessment of permeation quality of concrete through mercury intrusion porosimetry. Cem. Concr. Res. 34, 321–328 (2004). https://doi.org/10.1016/j.cemconres.2003.08.013

    Article  Google Scholar 

  30. Jin, H.; Liu, J.; Jiang, Z.; Zhou, H.; Liu, J.: Influence of the rainfall intensity on the chloride ion distribution in concrete with different levels of initial water saturation. Constr. Build. Mater. 281, 122561 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122561

  31. Sidney Mindess, D.; Francis Young, J.; Darwin, Concrete, Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ 07458, U.S.A., 2003.

  32. Li, Y.; Li, J.: Capillary tension theory for prediction of early autogenous shrinkage of self-consolidating concrete. Constr. Build. Mater. 53, 511–516 (2014). https://doi.org/10.1016/j.conbuildmat.2013.12.010

    Article  Google Scholar 

  33. Petermann, J.C.; Saeed, A.; Hammons, M. I.; Alkali-activated geopolymers: a literature review air force research laboratory materials and manufacturing directorate, 2010.

  34. Medina-Serna, T.; Arredondo-Rea, S.; Gómez-Soberón, J.; Rosas-Casarez, C.; Corral-Higuera, R.: Effect of curing temperature in the alkali-activated blast-furnace slag paste and their structural influence of porosity. Adv. Sci. Technol. Res. J. 10, 74–79 (2016)

    Article  Google Scholar 

  35. Fang, G.; Ho, W.K.; Tu, W.; Zhang, M.: Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature. Constr. Build. Mater. 172, 476–487 (2018). https://doi.org/10.1016/j.conbuildmat.2018.04.008

    Article  Google Scholar 

  36. Cwirzen, A.; Engblom, R.; Punkki, J.; Habermehl-Cwirzen, K.: Effects of curing: comparison of optimised alkali-activated PC-FA-BFS and PC concretes. Mag. Concr. Res. 66, 315–323 (2014). https://doi.org/10.1680/macr.13.00231

    Article  Google Scholar 

  37. Olalekan, O.; Ojedokun, Pal.; Mangat, S.: Chloride diffusion in alkali activated concrete, II Int. Conf. Concr. Sustain. (2016) 521–531.

  38. Zhang, B.; Li, S.: Determination of the surface fractal dimension for porous media by mercury porosimetry. Ind. Eng. Chem. Res. 34(4), 1383–1386 (1995)

    Article  MathSciNet  Google Scholar 

  39. Ji, X.; Chan, S.; Feng, N.: Fractal model for simulating the space-filling process of cement hydrates and fractal dimensions of pore structure of cement-based materials. Cem. Concr. Res. 27(11), 1691–1699 (1997)

    Article  Google Scholar 

  40. Xingye, Li.: Research on performance of alkali-activated fly ash mortar [D]. Southwest Jiaotong University, Chengdu (2018).

    Google Scholar 

  41. Fu, V.; Beaudoin, J.J.: On the distinction between delayed and secondary ettringite formation in concrete. Cem. Concr. Res. 26, 979–980 (1996). https://doi.org/10.1016/0008-8846(96)00080-4

    Article  Google Scholar 

Download references

Acknowledgements

The work described in this paper was fully supported by grants from the Sichuan Science and Technology Program (2019YFG0001) and Sichuan Provincial Department of Science and Technology Project (2020ZYD011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuhai Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, H., Li, F. & Li, X. Research on the Micro-Pore Structures of AAFAM. Arab J Sci Eng 46, 10885–10900 (2021). https://doi.org/10.1007/s13369-021-05557-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05557-z

Keywords

Navigation