Skip to main content
Log in

Nonlinear dynamic analysis of the extended telescopic joints manipulator with flexible links

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, the open-chain arm containing flexible links connected through telescopic joints is investigated so as to replace robotic chains with revolute joints. In this manipulator, telescopic joints are considered by a simultaneous motion combination of the prismatic and revolute joints. In comparison with revolute–prismatic joints in which prismatic joint hubs are utilized, telescopic joints lack the hub, and the linear motion is generated via a gear. Accordingly, the flexible link is not placed inside the hub. In fact, the link is merely divided into two sections each at a time step. The front section which is considered in the motion equations is placed at the back of the hinge’s point. This part solely creates vibration, which probably affects the motion of other sections. This type of manipulator’s joints due to the structure benefits consists of the optimum weight, simple mechanism, extended workspace acceptable for robotic tools, industrial machinery, and domestic systems. To derive motion equations of N-link flexible manipulator with telescopic joints system, the Euler–Lagrange formulation is employed. The obtained equations are in the time-varying form, and the manipulator link length changes during motion. The derived equations are simulated for a two-link system with different elasticity values, and the results are then analyzed to verify the outcomes. The bifurcation analysis has also been used to prevent unstable vibrations and chaotic responses. It should be noticed that this type of manipulator can be used in a fast and precise mechatronics' system for utilization in space exploration, space station, and spacecraft as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Chen, G.; Liu, D.; Wang, Y.; Jia, Q.; Liu, X.: Contact force minimization for space flexible manipulators based on effective mass. J. Guid. Control Dyn. 42(8), 1870–1877 (2019). https://doi.org/10.2514/1.G003987

    Article  Google Scholar 

  2. Madrid, E.; Ceccarelli, M.: Numerical solution for designing telescopic manipulators with prescribed workspace points. Robot. Comput. Integr. Manuf. 30(2), 201–205 (2014). https://doi.org/10.1016/j.rcim.2013.09.013

    Article  Google Scholar 

  3. Wang, J.; Li, D.; Jiang, J.: Optimal variable amplitudes input shaping control for slew maneuver of flexible spacecraft. J. Guid. Control Dyn. 40(12), 3255–3263 (2017). https://doi.org/10.2514/1.G002838

    Article  Google Scholar 

  4. Ceccarelli, M.: A formulation for analytical design of telescopic manipulators with prescribed workspace. Appl. Mech. Mater. 162, 113–120 (2012). https://doi.org/10.4028/www.scientific.net/AMM.162.113

    Article  Google Scholar 

  5. Aghili, F. A Reconfigurable Robot with Telescopic Links for In-Space Servicing. 2010.

  6. Xie, M. Flexible Multibody System Dynamics—Theory and Applications. Routledge, 2017.

  7. Khalid, A.; Mekid, S.: Intelligent spherical joints based tri-actuated spatial parallel manipulator for precision applications. Robot. Comput. Integr. Manuf. 54(10), 173–184 (2018). https://doi.org/10.1016/j.rcim.2017.11.005

    Article  Google Scholar 

  8. Mekid, S.; Shang, M.: Concept of dependent joints in functional reconfigurable robots. J. Eng. Des. Technol. 13(3), 400–418 (2015). https://doi.org/10.1108/JEDT-10-2012-0044

    Article  Google Scholar 

  9. Farokhi, H.; Ghayesh, M.H.; Hussain, S.: Three-dimensional nonlinear global dynamics of axially moving viscoelastic beams. J. Vib. Acoust. 138(1), 11007 (2016). https://doi.org/10.1115/1.4031600

    Article  Google Scholar 

  10. Ghayesh, M.H.; Balar, S.: Non-linear parametric vibration and stability analysis for two dynamic models of axially moving Timoshenko beams. Appl. Math. Model. 34(10), 2850–2859 (2010). https://doi.org/10.1016/j.apm.2009.12.019

    Article  MathSciNet  MATH  Google Scholar 

  11. Korayem, M.H.; Shafei, A.M.: Application of recursive gibbs-appell formulation in deriving the equations of motion of N-viscoelastic robotic manipulators in 3D space using Timoshenko beam theory. Acta Astronaut. 83(2–3), 273–294 (2013). https://doi.org/10.1016/j.actaastro.2012.10.026

    Article  Google Scholar 

  12. Korayem, M.H.; Shafei, A.M.: Motion equation of nonholonomic wheeled mobile robotic manipulator with revolute-prismatic joints using recursive gibbs-appell formulation. Appl. Math. Model. 39(5–6), 1701–1716 (2015). https://doi.org/10.1016/j.apm.2014.09.030

    Article  MathSciNet  MATH  Google Scholar 

  13. Jin, M.; Zhou, C.; Liu, Y.; Liu, H.: Analysis of reaction torque-based control of a redundant free-floating space robot. Chin. J. Aeronaut. 30(5), 1765–1776 (2017). https://doi.org/10.1016/j.cja.2017.02.021

    Article  Google Scholar 

  14. Chen, B.; Huang, J.; Ji, J.C.: Control of flexible single-link manipulators having duffing oscillator dynamics. Mech. Syst. Signal Process. 121, 44–57 (2019). https://doi.org/10.1016/j.ymssp.2018.11.014

    Article  Google Scholar 

  15. Korayem, M.H.; Dehkordi, S.F.: Derivation of dynamic equation of viscoelastic manipulator with revolute-prismatic joint using recursive gibbs-appell formulation. Nonlinear Dyn. 89(3), 2041–2064 (2017). https://doi.org/10.1007/s11071-017-3569-z

    Article  Google Scholar 

  16. Liu, Z.; Liu, J.; He, W.: Modeling and vibration control of a flexible aerial refueling hose with variable lengths and input constraint. Automatica 77, 302–310 (2017). https://doi.org/10.1016/j.automatica.2016.11.002

    Article  MathSciNet  MATH  Google Scholar 

  17. Book, W.J.: Recursive lagrangian dynamics of flexible manipulator arms. Int. J. Robot. Res. 3(3), 87–101 (1984). https://doi.org/10.1177/027836498400300305

    Article  Google Scholar 

  18. Korayem, M.H.; Dehkordi, S.F.; Mojarradi, M.; Monfared, P.: Analytical and experimental investigation of the dynamic behavior of a revolute-prismatic manipulator with N flexible links and hubs. Int. J. Adv. Manuf. Technol. 103(5–8), 2235–2256 (2019). https://doi.org/10.1007/s00170-019-03421-x

    Article  Google Scholar 

  19. Sayahkarajy, M.: Mode shape analysis, modal linearization, and control of an elastic two-link manipulator based on the normal modes. Appl. Math. Model. 59, 546–570 (2018). https://doi.org/10.1016/j.apm.2018.02.003

    Article  MathSciNet  MATH  Google Scholar 

  20. Ghayesh, M.H.: Coupled longitudinal-transverse dynamics of an axially accelerating beam. J. Sound Vib. 331(23), 5107–5124 (2012). https://doi.org/10.1016/j.jsv.2012.06.018

    Article  Google Scholar 

  21. Wang, D.; Zhang, J.; Guo, J.; Fan, R.: A closed-form nonlinear model for spatial timoshenko beam flexure hinge with circular cross-section. Chin. J. Aeronaut. 32(11), 2526–2537 (2019). https://doi.org/10.1016/j.cja.2019.01.025

    Article  Google Scholar 

  22. Wang, L.H.; Hu, Z.D.; Zhong, Z.; Ju, J.W.: Dynamic analysis of an axially translating viscoelastic beam with an arbitrarily varying length. Acta Mech. 214(3–4), 225–244 (2010). https://doi.org/10.1007/s00707-010-0287-8

    Article  MATH  Google Scholar 

  23. Sharifnia, M.; Akbarzadeh, A.: A constrained assumed modes method for dynamics of a flexible planar serial robot with prismatic joints. Multibody Sys.Dyn. 40(3), 261–285 (2017). https://doi.org/10.1007/s11044-016-9525-8

    Article  MathSciNet  MATH  Google Scholar 

  24. Yushu, B.; Zhihui, G.; Chao, Y.: Vibration reduction of open-chain flexible manipulators by optimizing independent motions of branch links. Chin. J. Aeronaut. 21(1), 79–85 (2008). https://doi.org/10.1016/S1000-9361(08)60011-4

    Article  Google Scholar 

  25. Kalyoncu, M.: Mathematical modelling and dynamic response of a multi-straight-line path tracing flexible robot manipulator with rotating-prismatic joint. Appl. Math. Model. 32(6), 1087–1098 (2008). https://doi.org/10.1016/j.apm.2007.02.032

    Article  MathSciNet  MATH  Google Scholar 

  26. My, C.A.; Bien, D.X.; Le, C.H.; Packianather, M.: An efficient finite element formulation of dynamics for a flexible robot with different type of joints. Mech. Mach. Theory 134, 267–288 (2019). https://doi.org/10.1016/j.mechmachtheory.2018.12.026

    Article  Google Scholar 

  27. Wehage, R.A.; Shabana, A.A.; Hwang, Y.L.: Projection methods in flexible multibody dynamics. Part II: dynamics and recursive projection methods. Int. J. Numer. Meth. Eng. 35(10), 1941–1966 (1992). https://doi.org/10.1002/nme.1620351003

    Article  MATH  Google Scholar 

  28. Desoyer, K.; Lugner, P.: Recursive formulation for the analytical or numerical application of the gibbs—appell method to the dynamics of robots. Robotica (1989). https://doi.org/10.1017/S0263574700006743

    Article  Google Scholar 

  29. Meirovitch, L.; Parker, R.: Fundamentals of vibrations. Appl. Mech. Rev. 54(6), B100 (2001). https://doi.org/10.1115/1.1421112

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moharram Habibnejad Korayem.

Appendices

Appendix 1

Here, the terms of Eq. (7) are completely shown:

$$ \begin{aligned} & C_{2ij} = \int_{0}^{{l_{i} }} {\mu_{i} {}^{i}{\mathbf{x}}_{i}^{T} {\mathbf{r}}_{ij} d\eta_{i} } \quad {\tilde{\mathbf{C}}}_{1ij} = \int_{0}^{{l_{i} }} {\mu_{i} {\tilde{\mathbf{r}}}_{ij} d\eta_{i} } ;\quad {\mathbf{C}}_{1ij} = \int_{0}^{{l_{i} }} {\mu_{i} {\mathbf{r}}_{ij} d\eta_{i} } ; \\ & C_{5ij} = \int_{0}^{{l_{i} }} {\mu_{i} \eta_{i} {}^{i}{\tilde{\mathbf{x}}}_{i}^{T} {\tilde{\mathbf{r}}}_{ij} d\eta_{i} } \quad C_{4i} = \int_{{ - \left( {L_{i} - l_{i} } \right)}}^{{l_{i} }} {\mu_{i} \eta_{i}^{2} {}^{i}{\tilde{\mathbf{x}}}_{i}^{T} {}^{i}{\tilde{\mathbf{x}}}_{i} d\eta_{i} } ;\quad {\mathbf{C}}_{3ijk} = \int_{0}^{{l_{i} }} {\mu_{i} {\mathbf{r}}_{ij}^{T} {\mathbf{r}}_{ik} d\eta_{i} } ; \\ & {\mathbf{C}}_{8ij} = \int_{0}^{{l_{i} }} {\mu_{i} \eta_{i} {}^{i}{\tilde{\mathbf{x}}}^{T}_{i} {\mathbf{r}}_{ij} d\eta_{i} } \quad {\mathbf{C}}_{7ij} = \int_{0}^{{l_{i} }} {\mu_{i} {\tilde{\mathbf{x}}}^{T}_{ij} {\mathbf{r}}_{ik} d\eta_{i} } ;\quad C_{6ijk} = \int_{0}^{{l_{i} }} {\mu_{i} {\tilde{\mathbf{r}}}^{T}_{ij} {\tilde{\mathbf{r}}}_{ik} d\eta_{i} } ; \\ & {{\varvec{\upalpha}}}_{ij} = C_{5ij} + \sum\limits_{k = 1}^{{m_{i} }} {\delta_{ik} \left( t \right)C_{6ijk} } \quad {{\varvec{\upbeta}}}_{ij} = {\mathbf{C}}_{8ij} + \sum\limits_{k = 1}^{{m_{i} }} {\delta_{ik} \left( t \right){\mathbf{C}}_{9ijk} } ;\quad {\mathbf{C}}_{9ijk} = \int_{0}^{{l_{i} }} {\mu_{i} {\tilde{\mathbf{r}}}_{ij} {\mathbf{r}}_{ik} d\eta_{i} } ; \\ & C^{\prime}_{5ij} = \int_{0}^{{l_{i} }} {\mu_{i} {}^{i}{\tilde{\mathbf{x}}}_{i}^{T} {\tilde{\mathbf{r}}}_{ij} d\eta_{i} } \quad C^{\prime}_{4i} = 2\int_{{ - \left( {L_{i} - l_{i} } \right)}}^{{l_{i} }} {\mu_{i} \eta_{i} {}^{i}{\tilde{\mathbf{x}}}_{i}^{T} {}^{i}{\tilde{\mathbf{x}}}_{i} d\eta_{i} } ;\quad \dot{C}_{4i} = 2\dot{\eta }_{i} \int_{{ - \left( {L_{i} - l_{i} } \right)}}^{{l_{i} }} {\mu_{i} \eta_{i} {}^{i}{\tilde{\mathbf{x}}}_{i}^{T} {}^{i}{\tilde{\mathbf{x}}}_{i} d\eta_{i} } ; \\ & {\dot{\mathbf{\alpha }}}_{ij} = \dot{C}_{5ij} + \sum\limits_{k = 1}^{{m_{i} }} {\dot{\delta }_{ik} \left( t \right)C_{6ijk} } \quad {\mathbf{\alpha^{\prime}}}_{ij} = \int_{0}^{{l_{i} }} {\mu_{i} {}^{i}{\tilde{\mathbf{x}}}_{i}^{T} {\tilde{\mathbf{r}}}_{ij} d\eta_{i} } ;\quad \dot{C}_{5ij} = \dot{\eta }_{i} \int_{0}^{{l_{i} }} {\mu_{i} {}^{i}{\tilde{\mathbf{x}}}_{i}^{T} {\tilde{\mathbf{r}}}_{ij} d\eta_{i} } ; \\ & {\mathbf{C^{\prime}}}_{8ij} = {\mathbf{C}}_{7ij} = \int_{0}^{{l_{i} }} {\mu_{i} {}^{i}{\tilde{\mathbf{x}}}^{T}_{i} {\mathbf{r}}_{ij} d\eta_{i} } \quad {\mathbf{C^{\prime}}}_{8ij} = {\mathbf{C}}_{7ij} = \int_{0}^{{l_{i} }} {\mu_{i} {}^{i}{\tilde{\mathbf{x}}}^{T}_{i} {\mathbf{r}}_{ij} d\eta_{i} } ;\quad {\dot{\mathbf{\beta }}}_{ij} = {\dot{\mathbf{C}}}_{8ij} + \sum\limits_{k = 1}^{{m_{i} }} {\dot{\delta }_{ik} \left( t \right){\mathbf{C}}_{9ijk} } ; \\ \end{aligned} $$
(47)

where \({}^{i}{\tilde{\mathbf{x}}}_{i}\) and \({\tilde{\mathbf{r}}}_{ij}\) are, respectively, the skew-symmetric matrices associated with the vectors \({}^{i}{\mathbf{x}}_{i}\) and \({\mathbf{r}}_{ij}\).

Appendix 2: The derivative of the kinetic energy of elastic robotic chain

The derivative of kinetic energy is obtained with respect to \(\dot{q}\) and \(q\), and then the velocities \(\dot{q}\) are differentiated with respect to time:

$$ \begin{aligned} \frac{d}{dt}\left( {\frac{\partial T}{{\partial \dot{q}_{j} }}} \right) & = \sum\limits_{i = 1}^{n} {\frac{{\partial {\mathbf{\ddot{r}}}^{T}_{{o_{i} }} }}{{\partial \dot{q}_{j} }}\left( {B_{0i} {\dot{\mathbf{r}}}_{{o_{i} }} + {}^{i}{\mathbf{B}}_{1i} - B_{2i} {}^{i}{{\varvec{\upomega}}}_{i} } \right)} \\ & \quad + \sum\limits_{i = 1}^{n} {\frac{{\partial {\dot{\mathbf{r}}}^{T}_{{o_{i} }} }}{{\partial \dot{q}_{j} }}\left( {B_{0i} {\mathbf{\ddot{r}}}_{{o_{i} }} + {}^{i}{\dot{\mathbf{B}}}_{1i} - 2\dot{B}_{2i} {}^{i}{{\varvec{\upomega}}}_{i} - B_{2i} {}^{i}{\dot{\mathbf{\omega }}}_{i} - {}^{i}{\tilde{\mathbf{\omega }}}_{i} B_{2i} {}^{i}{{\varvec{\upomega}}}_{i} } \right)} \\ & \quad + \sum\limits_{i = 1}^{n} {\frac{{\partial {}^{i}{\dot{\mathbf{\omega }}}^{T}_{i} }}{{\partial \dot{q}_{j} }}\left( {B_{2i} {\dot{\mathbf{r}}}_{{o_{i} }} + {}^{i}{\mathbf{B}}_{4i} {}^{i}{{\varvec{\upomega}}}_{i} + {}^{i}{\mathbf{B}}_{5i} } \right)} \\ & \quad + \sum\limits_{i = 1}^{n} {\frac{{\partial {}^{i}{\vec{\mathbf{\omega }}}^{T}_{i} }}{{\partial \dot{q}_{j} }}\left( {B_{2i} {\mathbf{\ddot{r}}}_{{o_{i} }} + {}^{i}{\dot{\mathbf{B}}}_{5i} + {}^{i}{\dot{\mathbf{B}}}_{4i} {}^{i}{{\varvec{\upomega}}}_{i} + {}^{i}{\mathbf{B}}_{4i} {}^{i}{\dot{\mathbf{\omega }}}_{i} + {}^{i}{\tilde{\mathbf{\omega }}}_{i} {\mathbf{B}}_{4i} {}^{i}{{\varvec{\upomega}}}_{i} } \right)} \\ \end{aligned} $$
(48)
$$ \frac{\partial T}{{\partial q_{j} }} = 0 $$

The derivative of kinetic energy with respect to \(\dot{\delta }_{jf}\) and \(\delta_{jf}\) encompasses differentiation with respect to \({{\varvec{\upalpha}}}_{ij} ,{{\varvec{\upbeta}}}_{ij} ,{\mathbf{B}}_{1i} ,B_{2i} ,B_{3i} ,{\mathbf{B}}_{4i} ,{\mathbf{B}}_{5i}\) in addition to \({\dot{\mathbf{r}}}_{{o_{i} }}\) and \({}^{i}{{\varvec{\upomega}}}_{i}\).

$$ \begin{gathered} \frac{d}{dt}\left( {\frac{\partial T}{{\partial \dot{\delta }_{if} }}} \right) = \sum\limits_{i = j + 1}^{n} {\frac{{\partial {\mathbf{\ddot{r}}}^{T}_{{o_{i} }} }}{{\partial \dot{\delta }_{if} }}\left( {B_{0i} {\dot{\mathbf{r}}}_{{o_{i} }} + {}^{i}{\mathbf{B}}_{1i} - B_{2i} {}^{i}{{\varvec{\upomega}}}_{i} } \right)} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \sum\limits_{i = j + 1}^{n} {\frac{{\partial {\dot{\mathbf{r}}}^{T}_{{o_{i} }} }}{{\partial \dot{\delta }_{if} }}\left( {B_{0i} {\mathbf{\ddot{r}}}_{{o_{i} }} + {}^{i}{\dot{\mathbf{B}}}_{1i} - 2\dot{B}_{2i} {}^{i}{{\varvec{\upomega}}}_{i} - B_{2i} {}^{i}{\dot{\mathbf{\omega }}}_{i} - {}^{i}{\tilde{\mathbf{\omega }}}_{i} B_{2i} {}^{i}{{\varvec{\upomega}}}_{i} } \right)} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \sum\limits_{i = j + 1}^{n} {\frac{{\partial {}^{i}{\dot{\mathbf{\omega }}}^{T}_{i} }}{{\partial \dot{\delta }_{if} }}\left( {B_{2i} {\dot{\mathbf{r}}}_{{o_{i} }} + {}^{i}{\mathbf{B}}_{4i} {}^{i}{{\varvec{\upomega}}}_{i} } \right)} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \sum\limits_{i = j + 1}^{n} {\frac{{\partial {}^{i}{{\varvec{\upomega}}}_{i}^{T} }}{{\partial \dot{\delta }_{if} }}\left( {B_{2i} .{\mathbf{\ddot{r}}}_{{o_{i} }} + {}^{i}{\dot{\mathbf{B}}}_{5i} + {}^{i}{\dot{\mathbf{B}}}_{4i} {}^{i}{{\varvec{\upomega}}}_{i} + {}^{i}{\mathbf{B}}_{4i} {}^{i}{\dot{\mathbf{\omega }}}_{i} + {}^{i}{\tilde{\mathbf{\omega }}}_{i} {\mathbf{B}}_{4i} {}^{i}{{\varvec{\upomega}}}_{i} } \right)} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + {\mathbf{\ddot{r}}}^{T}_{{o_{i} }} {\mathbf{C}}_{1if} + \sum\limits_{k = 1}^{{m_{i} }} {\ddot{\delta }_{ik} {\mathbf{C}}_{3ijk} } + \ddot{\eta }_{j} {\mathbf{C}}_{2ij} + {}^{i}{\dot{\mathbf{\omega }}}^{T}_{i} {{\varvec{\upbeta}}}_{ij} + {}^{i}{\vec{\mathbf{\omega }}}^{T}_{i} {\dot{\mathbf{\beta }}}_{ij} \hfill \\ \end{gathered} $$
(49)
$$ \begin{gathered} - \frac{\partial T}{{\partial \delta_{if} }} = - \sum\limits_{i = j + 1}^{n} {\frac{{\partial {\dot{\mathbf{r}}}^{T}_{{o_{i} }} }}{{\partial \delta_{if} }}\left( {B_{0i} {\dot{\mathbf{r}}}_{{o_{i} }} + {}^{i}{\mathbf{B}}_{1i} - B_{2i} {}^{i}{{\varvec{\upomega}}}_{i} } \right)} + {}^{i}{{\varvec{\upomega}}}_{i}^{T} \sum\limits_{j = 1}^{{m_{i} }} {\dot{\delta }_{ij} {\mathbf{C}}_{9ijk} } \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + {}^{i}{{\varvec{\upomega}}}_{i}^{T} \dot{\eta }_{i} {\mathbf{C}}_{7ij} - \frac{1}{2}{}^{i}{{\varvec{\upomega}}}_{i}^{T} (C_{5ij}^{T} ){}^{i}{{\varvec{\upomega}}}_{i} - \frac{1}{2}{}^{i}{{\varvec{\upomega}}}_{i}^{T} (\sum\limits_{k = 1}^{{m_{i} }} {\delta_{ik} {\mathbf{C}}_{6ijk} } ){}^{i}{{\varvec{\upomega}}}_{i} \hfill \\ \end{gathered} $$

Finally, the differentiation of kinetic energy with respect to \(\dot{\eta },\eta\) is presented:

$$\begin{aligned} \frac{d}{{dt}}\left( {\frac{{\partial T}}{{\partial \dot{\eta }_{j} }}} \right) & = \sum\limits_{{i = j + 1}}^{n} {\frac{{\partial {\mathbf{\ddot{r}}}^{T} _{{o_{i} }} }}{{\partial \dot{\eta }_{j} }}\left( {B_{{0i}} {\mathbf{\dot{r}}}_{{o_{i} }} + {}^{i}{\mathbf{B}}_{{1i}} - B_{{2i}} {}^{i}{\mathbf{\omega }}_{i} } \right)} \\ & \quad + \sum\limits_{{i = j + 1}}^{n} {\frac{{\partial {\mathbf{\dot{r}}}^{T} _{{o_{i} }} }}{{\partial \dot{\eta }_{j} }}\left( {B_{{0i}} {\mathbf{\ddot{r}}}_{{o_{i} }} + {}^{i}{\mathbf{\dot{B}}}_{{1i}} - 2\dot{B}_{{2i}} {}^{i}{\mathbf{\omega }}_{i} - B_{{2i}} {}^{i}{\mathbf{\dot{\omega }}}_{i} - {}^{i}{\mathbf{\tilde{\omega }}}_{i} B_{{2i}} {}^{i}{\mathbf{\omega }}_{i} } \right)} \\ & \quad + {\mathbf{\ddot{r}}}^{T} _{{o_{i} }} B_{{0i}} {}^{i}{\mathbf{x}}_{i} + B_{{0i}} \ddot{\eta }_{i} + \sum\limits_{{k = 1}}^{{m_{i} }} {\ddot{\delta }_{{ik}} {\mathbf{C}}_{{2ij}} } - {}^{i}{\mathbf{\dot{\omega }}}_{j}^{T} \sum\limits_{{j = 1}}^{{m_{i} }} {\delta _{{ij}} {\mathbf{C}}_{{7ij}} } - {}^{i}{\mathbf{\omega }}_{j}^{T} \sum\limits_{{j = 1}}^{{m_{i} }} {\dot{\delta }_{{ij}} {\mathbf{C}}_{{7ij}} } \\ - \frac{\partial T}{{\partial \eta }} &= - \sum\limits_{i = j + 1}^{n} {\frac{{\partial {\dot{\mathbf{r}}}^{T}_{{o_{i} }} }}{\partial \eta }\left( {B_{0i} {\dot{\mathbf{r}}}_{{o_{i} }} + {}^{i}{\mathbf{B}}_{1i} - B_{2i} {}^{i}{{\varvec{\upomega}}}_{i} } \right)} \hfill \\ &\quad - \frac{1}{2}{}^{i}{{\varvec{\upomega}}}_{i}^{T} \left( {C^{\prime}_{4i} + \sum\limits_{j = 1}^{{m_{i} }} {\delta_{ij} (C_{5ij}^{\prime T} + } {\mathbf{\alpha^{\prime}}}_{ij} )} \right){}^{i}{{\varvec{\upomega}}}_{i} - {}^{i}{\dot{\mathbf{\omega }}}_{j}^{T} \sum\limits_{j = 1}^{{m_{i} }} {\dot{\delta }_{ij} {\mathbf{C^{\prime}}}_{8ij} } \hfill \\\end{aligned}$$
(50)

Appendix 3: Derivatives of system potential energy and Rayleigh dissipation function

Taking the partial derivative of strain potential energy with respect to state variables results in

$$ \begin{gathered} \frac{{\partial V_{e} }}{{\partial \delta_{if} }} = \sum\limits_{k = 1}^{{m_{i} }} {\delta_{ik} \left( t \right){\mathbf{K}}_{jkf} } - {\mathbf{g}}^{T} \frac{{\partial {}^{i}{\mathbf{R}}_{j} }}{{\partial \delta_{jf} }}\left( {\int_{0}^{{l_{i} }} {\mu \left\{ {\begin{array}{*{20}c} {u_{i} } & {v_{i} } & {w_{i} } \\ \end{array} } \right\}d\eta + \mu l\eta {}^{i}{\mathbf{x}}_{i} } } \right) - {\mathbf{g}}^{T} {}^{i}{\mathbf{R}}_{j} \int_{0}^{{l_{i} }} {\mu {\mathbf{r}}_{ij} d\eta } \hfill \\ \frac{{\partial V_{e} }}{{\partial q_{j} }} = - {\mathbf{g}}^{T} \frac{{\partial {}^{i}{\mathbf{R}}_{j} }}{{\partial q_{j} }}\left( {\int_{0}^{{l_{i} }} {\mu \left\{ {\begin{array}{*{20}c} {u_{i} } & {v_{i} } & {w_{i} } \\ \end{array} } \right\}d\eta + \mu l\eta {}^{i}{\mathbf{x}}_{i} } } \right);\,\,\,\,\,\,\,\,\frac{{\partial V_{e} }}{{\partial \eta_{j} }} = - {\mathbf{g}}^{T} {}^{i}{\mathbf{R}}_{j} \left( {\mu l{}^{i}{\mathbf{x}}_{i} } \right) \hfill \\ \end{gathered} $$
(51)

In addition, the generalized forces related to nonconservative forces are found by differentiation using the Rayleigh dissipation function with respect to generalized velocities. Taking the derivative of Rayleigh dissipation function with respect to \({\delta }_{ij}\) results in

$$ \frac{\partial D}{{\partial \dot{\delta }_{jf} }} = \sum\limits_{k = 1}^{{m_{j} }} {\dot{\delta }_{jk} \left( t \right){\mathbf{D}}_{jkf} } $$
(52)

Similar to \({K}_{jkf}\), \({D}_{jkf}\) for a manipulator with known dimensions can be calculated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghajari, M., Fathollahi Dehkordi, S. & Korayem, M.H. Nonlinear dynamic analysis of the extended telescopic joints manipulator with flexible links. Arab J Sci Eng 46, 7909–7928 (2021). https://doi.org/10.1007/s13369-020-05316-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05316-6

Keywords

Navigation