Skip to main content
Log in

Photonic Molecule with Mechanical Frequency Tuning for the Optical Measurements of a Semiconductor Charge Qubit

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

A spectroscopic approach to measuring a charge qubit placed in a waveguide consisting of three microcavities (a photonic molecule) is discussed. The logical states of a qubit are represented by the single-electron orbitals of a semiconductor double quantum dot. The impact of different factors that cause deviations of the system’s parameters from specified values ​​is investigated. The possibility of controlling the spectrum of a photonic molecule using a local change in its dielectric properties in order to optimize the qubit measurement procedure is analyzed. The functions of the measuring contrast and signal-to-noise ratio are calculated depending on the main parameters of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Tsukanov, A.V. and Kateev, I.Yu., Quantum calculations on quantum dots in semiconductor microcavities. Part I, Russ. Microelectron., 2014, vol. 43, no. 4, pp. 315–327.

    Article  Google Scholar 

  2. Tsukanov, A.V. and Kateev, I.Yu., Quantum calculations on quantum dots in semiconductor microcavities. Part II, Russ. Microelectron., 2014, vol. 43, no. 5, pp. 377–387.

    Article  Google Scholar 

  3. Tsukanov, A.V. and Kateev, I.Yu., Quantum calculations on quantum dots in semiconductor microcavities. Part III, Russ. Microelectron., 2015, vol. 44, no. 2, pp. 61–78.

    Article  Google Scholar 

  4. Single Quantum Dots: Fundamentals, Applications and New Concepts, Michler, P., Ed., Vol. 90 of Topics in Applied Physics, Berlin: Springer, 2003.

  5. Wallquist, M., Hammerer, K., Rabl, P., Lukin, M., and Zoller, P., Hybrid quantum devices and quantum engineering, Phys. Scr., 2009, vol. 137, p. 014001.

    Article  Google Scholar 

  6. Blais, A., Huang, R.-S., Wallraff, A., Girvin, S.M., and Schoelkopf, R.J., Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, Phys. Rev. A, 2004, vol. 69, p. 062320.

    Article  Google Scholar 

  7. Lodahl, P., Mahmoodian, S., and Stobbe, S., Interfacing single photons and single quantum dots with photonic nanostructures, Rev. Mod. Phys., 2015, vol. 87, p. 347.

    Article  MathSciNet  Google Scholar 

  8. Shuang, Xu., Shen, H.Z., and Yi, X.X., Single-photon transistor based on tunable coupling in a cavity quantum electrodynamics system, J. Opt. Soc. Am. B, 2016, vol. 33, p. 1600.

    Article  Google Scholar 

  9. Tsukanov, A.V., Photon-assisted conditionality for double-dot charge qubits in a single-mode cavity, Phys. Rev. A, 2012, vol. 85, p. 012331.

    Article  Google Scholar 

  10. Tsukanov, A.V. and Kateev I.Yu., Spectroscopic measurement of a charge qubit on a double quantum dot using a photonic molecule, Phys. Rev. A, in press.

  11. Faraon, A., Majumdar, A., Englund, D., Kim, E., Bajcsy, M., and Vučković, J., Integrated quantum optical networks based on quantum dots and photonic crystals, New J. Phys., 2011, vol. 13, p. 055025.

    Article  Google Scholar 

  12. Kim, E.D., Majumdar, A., Kim, H., Petroff, P., and Vučković, J., Differential reflection spectroscopy of a single quantum dot strongly coupled to a photonic crystal cavity, Appl. Phys. Lett., 2010, vol. 97, p. 053111.

    Article  Google Scholar 

  13. Stumpf, W.C., Asano, T., Kojima, T., Fujita, M., Tanaka, Y., and Noda, S., Reflectance measurement of two-dimensional photonic crystal nanocavities with embedded quantum dots, Phys. Rev. B, 2010, vol. 82, p. 075119.

    Article  Google Scholar 

  14. Englund, D., Faraon, A., Fushman, I., Stoltz, I., Petroff, P., and Vučković, J., Controlling cavity reflectivity with a single quantum dot, Nature (London, U.K.), 2007, vol. 450, p. 857.

    Article  Google Scholar 

  15. Piggott, A.Y., Lagoudakis, K.G., Sarmiento, T., Bajcsy, M., Shambat, G., and Vučković, J., Photo-oxidative tuning of individual and coupled GaAs photonic crystal cavities, Opt. Express, 2014, vol. 22, p. 15017.

    Article  Google Scholar 

  16. Petruzzella, M., La China, F., Intonti, F., Caselli, N., De Pas, M., van Otten, F.W.M., Gurioli, M., and Fiore, A., Nanoscale mechanical actuation and near-field read-out of photonic crystal molecules, Phys. Rev. B, 2016, vol. 94, p. 115413.

    Article  Google Scholar 

  17. Schmidt, C., Chipouline, A., Käsebier, T., Kley, E.-B., Tünnermann, A., and Pertsch, T., Differential all-optical tuning of eigenmodes in coupled microdisks, Appl. Phys. Lett., 2013, vol. 103, p. 041115.

    Article  Google Scholar 

  18. Gil-Santos, E., Baker, C., Lemaître, A., Gomez, C., Leo, G., and Favero, I., Scalable high-precision tuning of photonic resonators by resonant cavity-enhanced photoelectrochemical etching, Nat. Commun., 2017, vol. 8, p. 14267.

    Article  Google Scholar 

  19. Bessette, J.T. and Ahn, D., Vertically stacked microring waveguides for coupling between multiple photonic planes, Opt. Express, 2013, vol. 21, p. 13580.

    Article  Google Scholar 

  20. Trupke, M., Metz, J., Beige, A., and Hinds, E.A., Towards quantum computing with single atoms and optical cavities on atom chips, J. Mod. Opt., 2007, vol. 54, p. 1639.

    Article  Google Scholar 

  21. Xie, Z.G. and Solomon, G.S., Spatial ordering of quantum dots in microdisks, Appl. Phys. Lett., 2005, vol. 87, p. 093106.

    Article  Google Scholar 

  22. Ota, Y., Ohta, R., Kumagai, N., Iwamoto, S., and Arakawa, Y., Vacuum Rabi spectra of a single quantum emitter, Phys. Rev. Lett., 2015, vol. 114, p. 143603.

    Article  Google Scholar 

  23. Schneider, C., Heindel, T., Huggenberger, A., Weinmann, P., Kistner, C., Kamp, M., Reitzenstein, S., Höfling, S., and Forchel, A., Single photon emission from a site-controlled quantum dot-micropillar cavity system, Appl. Phys. Lett., 2009, vol. 94, p. 111111.

    Article  Google Scholar 

  24. Greuter, L., Najer, D., Kuhlmann, A.V., Valentin, S.R., Ludwig, A., Wieck, A.D., Starosielec, S., and Warburton, R.J., Epitaxial lift-off for solid-state cavity quantum electrodynamics, J. Appl. Phys., 2015, vol. 118, p. 075705.

    Article  Google Scholar 

  25. Muñoz-Matutano, G., Royo, M., Climente, J.I., Canet-Ferrer, J., Fuster, D., Alonso-González, P., Fernández-Martínez, I., Martínez-Pastor, J., González, Y., González, L., Briones, F., and Alén, B., Charge control in laterally coupled double quantum dots, Phys. Rev. B, 2011, vol. 84, p. 041308.

    Article  Google Scholar 

  26. Zhang, Y., Shibata, K., Nagai, N., Ndebeka-Bandou, C., Bastard, G., and Hirakawa, K., Terahertz intersublevel transitions in single self-assembled InAs quantum dots with variable electron numbers, Nano Lett., 2015, vol. 15, p. 1166.

    Article  Google Scholar 

  27. Petruzzella, M., Xia, T., Pagliano, F., Birindelli, S., Midolo, L., Zobenica, Z., Li, L.H., Linfield, E.H., and Fiore, A., Fully tuneable, Purcell enhanced solid-state quantum emitters, Appl. Phys. Lett., 2015, vol. 107, p. 141109.

    Article  Google Scholar 

  28. Baur, S., Tiarks, D., Rempe, G., and Dürr, S., Single-photon switch based on Rydberg blockade, Phys. Rev. Lett., 2014, vol. 112, p. 073901.

    Article  Google Scholar 

  29. Tsukanov, A.V., Quantum dots in photonic molecules and quantum informatics. Part I, Russ. Microelectron., 2013, vol. 42, no. 6, pp. 325–346.

    Article  Google Scholar 

  30. Tsukanov, A.V., Quantum dots in photonic molecules and quantum informatics. Part II, Russ. Microelectron., 2014, vol. 43, no. 3, pp. 165–180.

    Article  Google Scholar 

  31. Yariv, A., Xu, Y., Lee, R.K., and Scherer, A., Coupled-resonator optical waveguide: a proposal and analysis, Opt. Lett., 1999, vol. 24, p. 711.

    Article  Google Scholar 

  32. Majumdar, A., Rundquist, A., Bajcsy, M., Dasika, V.D., Bank, S.R., and Vučković, J., Design and analysis of photonic crystal coupled cavity arrays for quantum simulation, Phys. Rev. B, 2012, vol. 86, p. 195312.

    Article  Google Scholar 

  33. Liu, H.-C. and Yariv, A., “Ideal” optical delay lines based on tailored-coupling and reflecting, coupled-resonator optical waveguides, Opt. Lett., 2012, vol. 37, p. 1964.

    Article  Google Scholar 

  34. Flatten, L.C., Trichet, A.A.P., and Smith, J.M., Spectral engineering of coupled open-access microcavities, Laser. Photon. Rev., 2016, vol. 10, p. 257.

    Article  Google Scholar 

  35. Haddadi, S., Hamel, P., Beaudoin, G., Sagnes, I., Sauvan, C., Lalanne, P., Levenson, J.A., and Yacomotti, A.M., Photonic molecules: Tailoring the coupling strength and sign, Opt. Express, 2014, vol. 22, p. 12359.

    Article  Google Scholar 

  36. Caselli, N., Intonti, F., Bianchi, C., Riboli, F., Vignolini, S., Balet, L., Li, L.H., Francardi, M., Gerardino, A., Fiore, A., and Gurioli, M., Post-fabrication control of evanescent tunnelling in photonic crystal molecules, Appl. Phys. Lett., 2012, vol. 101, p. 211108.

    Article  Google Scholar 

  37. Felicetti, S., Romero, G., Rossini, D., Fazio, R., and Solano, E., Photon transfer in ultrastrongly coupled three-cavity arrays, Phys. Rev. A, 2014, vol. 89, p. 013853.

    Article  Google Scholar 

  38. Tsukanov, A.V., Rabi oscillations in the four-level double-dot structure under the influence of the resonant pulse, Phys. Rev. B, 2006, vol. 73, p. 085308.

    Article  Google Scholar 

  39. Tsukanov, A.V. and Openov, L.A., Electron transfer between semiconductor quantum dots via laser induced resonance transitions, Semiconductors, 2004, vol. 38, no. 1, pp. 91–98.

    Article  Google Scholar 

  40. Tsukanov, A.V. and Kateev, I.Yu., Quantum memory node based on a semiconductor double quantum dot in a laser-controlled optical resonator, Quantum Electron., 2017, vol. 47, p. 748.

    Article  Google Scholar 

  41. Fushman, I., Waks, E., Englund, D., Stoltz, N., Petroff, P., and Vučković, J., Ultrafast nonlinear optical tuning of photonic crystal cavities, Appl. Phys. Lett., 2007, vol. 90, p. 091118.

    Article  Google Scholar 

  42. Faraon, A., Englund, D., Fushman, I., and Vučković, J., Local quantum dot tuning on photonic crystal chips, Appl. Phys. Lett., 2007, vol. 90, p. 213110.

    Article  Google Scholar 

  43. Sridharan, D., Waks, E., Solomon, G., and Fourkas, J.T., Reversible tuning of photonic crystal cavities using photochromic thin films, Appl. Phys. Lett., 2010, vol. 96, p. 153303.

    Article  Google Scholar 

  44. Vignolini, S., Riboli, F., Wiersma, D.S., Balet, L., Li, L.H., Francardi, M., Gerardino, A., Fiore, A., Gurioli, M., and Intonti, F., Nanofluidic control of coupled photonic crystal resonators, Appl. Phys. Lett., 2010, vol. 96, p. 141114.

    Article  Google Scholar 

  45. Shainline, J., Elston, S., Liu, Z., Fernandes, G., Zia, R., and Xu, J., Subwavelength silicon microcavities, Opt. Express, 2009, vol. 17, p. 23323.

    Article  Google Scholar 

Download references

Funding

The investigation was supported by Program no. 0066-2019-0005 of the Ministry of Science and Higher Education of Russia for Valiev Institute of Physics and Technology of RAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Tsukanov or I. Yu. Kateev.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsukanov, A.V., Kateev, I.Y. Photonic Molecule with Mechanical Frequency Tuning for the Optical Measurements of a Semiconductor Charge Qubit. Russ Microelectron 50, 75–91 (2021). https://doi.org/10.1134/S1063739721020098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739721020098

Keywords:

Navigation