Skip to main content

Advertisement

Log in

Progress in Defining the Genetic Contribution to Type 2 Diabetes in Individuals of East Asian Ancestry

  • Genetics (AP Morris, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Prevalence of type 2 diabetes (T2D) and progression of complications differ between worldwide populations. While obesity is a major contributing risk factor, variations in physiological manifestations, e.g., developing T2D at lower body mass index in some populations, suggest other contributing factors. Early T2D genetic associations were mostly discovered in European ancestry populations. This review describes the progression of genetic discoveries associated with T2D in individuals of East Asian ancestry in the last 10 years and highlights the shared genetic susceptibility between the population groups and additional insights into genetic contributions to T2D.

Recent Findings

Through increased sample size and power, new genetic associations with T2D were discovered in East Asian ancestry populations, often with higher allele frequencies than European ancestry populations.

Summary

As we continue to generate maps of T2D-associated variants across diverse populations, there will be a critical need to expand and diversify other omics resources to enable integration for clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Odegaard AO, Koh WP, Vazquez G, et al. BMI and diabetes risk in Singaporean Chinese. Diabetes Care. 2009;32:1104–6. https://doi.org/10.2337/dc08-1674.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hsu WC, Araneta MR, Kanaya AM, et al. BMI cut points to identify at-risk Asian Americans for type 2 diabetes screening. Diabetes Care. 2015;38:150–8. 2014. https://doi.org/10.2337/dc14-2391.

    Article  PubMed  Google Scholar 

  3. • Ma RC, Chan JC. Type 2 diabetes in East Asians: similarities and differences with populations in Europe and the United States. Ann N Y Acad Sci. 2013;1281:64–91. https://doi.org/10.1111/nyas.12098This review provides a detailed comparison on the epidemiology of type 2 diabetes and its complications between East Asian and European populations.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mahajan A, Spracklen CN, Zhang W, et al.. Trans-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. medRxiv 2020: 2020.2009.2022.20198937. https://doi.org/10.1101/2020.09.22.20198937.

  5. Mahajan A, Taliun D, Thurner M, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet. 2018;50:1505–13. https://doi.org/10.1038/s41588-018-0241-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. •• Spracklen CN, Horikoshi M, Kim YJ, et al. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature. 2020. https://doi.org/10.1038/s41586-020-2263-3This article, to date, is the largest T2D genome-wide meta-analysis in East Asian populations that combined more than 77K cases and 356K controls.

  7. Vujkovic M, Keaton JM, Lynch JA, et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat Genet. 2020;52:680–91. https://doi.org/10.1038/s41588-020-0637-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. • Cho YS, Chen CH, Hu C, et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet. 2011;44:67–72. https://doi.org/10.1038/ng.1019This article is the first large-scale T2D genome-wide meta-analysis in East Asian populations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Suzuki K, Akiyama M, Ishigaki K, et al. Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat Genet. 2019;51:379–86. https://doi.org/10.1038/s41588-018-0332-4.

    Article  CAS  PubMed  Google Scholar 

  10. Flannick J, Florez JC, et al. Nat Rev Genet. 2016;17:535–49. https://doi.org/10.1038/nrg.2016.56.

    Article  CAS  PubMed  Google Scholar 

  11. Diabetes Genetics Initiative of Broad Institute of H, Mit LU, Novartis Institutes of BioMedical R, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–6. https://doi.org/10.1126/science.1142358.

    Article  CAS  Google Scholar 

  12. Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science, 2007;316:1341–5. https://doi.org/10.1126/science.1142382.

  13. Zeggini E, Weedon MN, Lindgren CM, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316:1336–41. https://doi.org/10.1126/science.1142364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Voight BF, Scott LJ, Steinthorsdottir V, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42:579–89. https://doi.org/10.1038/ng.609.

  15. Morris AP, Voight BF, Teslovich TM, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012;44:981–90. https://doi.org/10.1038/ng.2383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mahajan A, Wessel J, Willems SM, et al. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nat Genet. 2018;50:559–71. https://doi.org/10.1038/s41588-018-0084-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Replication DIG, Meta-analysis C, Asian Genetic Epidemiology Network Type 2 Diabetes C, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014;46:234–44. https://doi.org/10.1038/ng.2897.

    Article  CAS  Google Scholar 

  18. Zhao W, Rasheed A, Tikkanen E, et al. Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease. Nat Genet. 2017;49:1450–7. https://doi.org/10.1038/ng.3943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yasuda K, Miyake K, Horikawa Y, et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet. 2008;40:1092–7. https://doi.org/10.1038/ng.207.

    Article  CAS  PubMed  Google Scholar 

  20. Unoki H, Takahashi A, Kawaguchi T, et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet. 2008;40:1098–102. https://doi.org/10.1038/ng.208.

    Article  CAS  PubMed  Google Scholar 

  21. Tsai FJ, Yang CF, Chen CC, et al. A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLoS Genet. 2010;6:e1000847. https://doi.org/10.1371/journal.pgen.1000847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yamauchi T, Hara K, Maeda S, et al. A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B. Nat Genet. 2010;42:864–8. https://doi.org/10.1038/ng.660.

    Article  CAS  PubMed  Google Scholar 

  23. Shu XO, Long J, Cai Q, et al. Identification of new genetic risk variants for type 2 diabetes. PLoS Genet. 2010;6:e1001127. https://doi.org/10.1371/journal.pgen.1001127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. International HapMap C, Frazer KA, Ballinger DG, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449:851–61. https://doi.org/10.1038/nature06258.

    Article  CAS  Google Scholar 

  25. Barrett JC, Clayton DG, Concannon P, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009;41:703–7. https://doi.org/10.1038/ng.381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nakajima H, Yoshiuchi I, Hamaguchi T, et al. Hepatocyte nuclear factor-4 alpha gene mutations in Japanese non-insulin dependent diabetes mellitus (NIDDM) patients. Res Commun Mol Pathol Pharmacol. 1996;94:327–30.

    CAS  PubMed  Google Scholar 

  27. Plengvidhya N, Kooptiwut S, Songtawee N, et al. PAX4 mutations in Thais with maturity onset diabetes of the young. J Clin Endocrinol Metab. 2007;92:2821–6. https://doi.org/10.1210/jc.2006-1927.

    Article  CAS  PubMed  Google Scholar 

  28. Jo W, Endo M, Ishizu K, et al. A novel PAX4 mutation in a Japanese patient with maturity-onset diabetes of the young. Tohoku J Exp Med. 2011;223:113–8. https://doi.org/10.1620/tjem.223.113.

    Article  CAS  PubMed  Google Scholar 

  29. Aylward A, Chiou J, Okino ML, et al. Shared genetic risk contributes to type 1 and type 2 diabetes etiology. Hum Mol Genet. 2018. https://doi.org/10.1093/hmg/ddy314.

  30. Rende D, Baysal N, Kirdar B. Complex disease interventions from a network model for type 2 diabetes. PLoS One. 2013;8:e65854. https://doi.org/10.1371/journal.pone.0065854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zheng JS, Huang T, Li K, et al. Modulation of the association between the PEPD variant and the risk of type 2 diabetes by n-3 fatty acids in Chinese Hans. J Nutrigenet Nutrigenomics. 2015;8:36–43. https://doi.org/10.1159/000381348.

    Article  CAS  PubMed  Google Scholar 

  32. Ndiaye FK, Ortalli A, Canouil M, et al. Expression and functional assessment of candidate type 2 diabetes susceptibility genes identify four new genes contributing to human insulin secretion. Mol Metab. 2017;6:459–70. https://doi.org/10.1016/j.molmet.2017.03.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Genomes Project C, Abecasis GR, Auton A, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65. https://doi.org/10.1038/nature11632.

    Article  CAS  Google Scholar 

  34. Hara K, Fujita H, Johnson TA, et al. Genome-wide association study identifies three novel loci for type 2 diabetes. Hum Mol Genet. 2014;23:239–46. https://doi.org/10.1093/hmg/ddt399.

    Article  CAS  PubMed  Google Scholar 

  35. Imamura M, Takahashi A, Yamauchi T, et al. Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes. Nat Commun. 2016;7:10531. https://doi.org/10.1038/ncomms10531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Klok MD, Jakobsdottir S, Drent ML. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev. 2007;8:21–34. https://doi.org/10.1111/j.1467-789X.2006.00270.x.

    Article  CAS  PubMed  Google Scholar 

  37. Rasmussen-Torvik LJ, Wassel CL, Ding J, et al. Associations of body mass index and insulin resistance with leptin, adiponectin, and the leptin-to-adiponectin ratio across ethnic groups: the Multi-Ethnic Study of Atherosclerosis (MESA). Ann Epidemiol. 2012;22:705–9. https://doi.org/10.1016/j.annepidem.2012.07.011.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Consortium STD, Williams AL, Jacobs SB, et al. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature. 2014;506:97–101. https://doi.org/10.1038/nature12828.

    Article  CAS  Google Scholar 

  39. Rusu V, Hoch E, Mercader JM, et al. Type 2 diabetes variants disrupt function of SLC16A11 through two distinct mechanisms. Cell. 2017;170:199–212 e120. https://doi.org/10.1016/j.cell.2017.06.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Biddlestone J, Batie M, Bandarra D, et al. SINHCAF/FAM60A and SIN3A specifically repress HIF-2alpha expression. Biochem J. 2018;475:2073–90. https://doi.org/10.1042/BCJ20170945.

    Article  CAS  PubMed  Google Scholar 

  41. • Fuchsberger C, Flannick J, Teslovich TM, et al. The genetic architecture of type 2 diabetes. Nature. 2016;536:41–7. https://doi.org/10.1038/nature18642. This article is the first trans-ancestry T2D meta-analysis for whole-exome sequencing data that included populations of African-American, East Asian, European, Hispanic, and South Asian ancestries.

  42. Flannick J, Mercader JM, Fuchsberger C, et al. Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls. Nature. 2019;570:71–6. https://doi.org/10.1038/s41586-019-1231-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91. https://doi.org/10.1038/nature19057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cheung CY, Tang CS, Xu A, et al. Exome-chip association analysis reveals an Asian-specific missense variant in PAX4 associated with type 2 diabetes in Chinese individuals. Diabetologia. 2017;60:107–15. https://doi.org/10.1007/s00125-016-4132-z.

    Article  CAS  PubMed  Google Scholar 

  45. Kwak SH, Chae J, Lee S, et al. Nonsynonymous variants in PAX4 and GLP1R are associated with type 2 diabetes in an East Asian population. Diabetes. 2018;67:1892–902. https://doi.org/10.2337/db18-0361.

    Article  CAS  PubMed  Google Scholar 

  46. Wessel J, Chu AY, Willems SM, et al. Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nat Commun. 2015;6:5897. https://doi.org/10.1038/ncomms6897.

    Article  CAS  PubMed  Google Scholar 

  47. Mahajan A, Sim X, Ng HJ, et al. Identification and functional characterization of G6PC2 coding variants influencing glycemic traits define an effector transcript at the G6PC2-ABCB11 locus. PLoS Genet. 2015;11:e1004876. https://doi.org/10.1371/journal.pgen.1004876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Genomes Project C, Auton A, Brooks LD, et al. A global reference for human genetic variation. Nature. 2015;526:68–74. https://doi.org/10.1038/nature15393.

    Article  CAS  Google Scholar 

  49. Sathananthan A, Man CD, Micheletto F, et al. Common genetic variation in GLP1R and insulin secretion in response to exogenous GLP-1 in nondiabetic subjects: a pilot study. Diabetes Care. 2010;33:2074–6. https://doi.org/10.2337/dc10-0200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen Z, Chen J, Collins R, et al. China Kadoorie Biobank of 0.5 million people: survey methods, baseline characteristics and long-term follow-up. Int J Epidemiol. 2011;40:1652–66. https://doi.org/10.1093/ije/dyr120.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Moon S, Kim YJ, Han S, et al. The Korea Biobank Array: design and identification of coding variants associated with blood biochemical traits. Sci Rep. 2019;9:1382. https://doi.org/10.1038/s41598-018-37832-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wen W, Zheng W, Okada Y, et al. Meta-analysis of genome-wide association studies in East Asian-ancestry populations identifies four new loci for body mass index. Hum Mol Genet. 2014;23:5492–504. https://doi.org/10.1093/hmg/ddu248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Akiyama M, Okada Y, Kanai M, et al. Genome-wide association study identifies 112 new loci for body mass index in the Japanese population. Nat Genet. 2017;49:1458–67. https://doi.org/10.1038/ng.3951.

    Article  CAS  PubMed  Google Scholar 

  54. Imamura M, Maeda S, Yamauchi T, et al. A single-nucleotide polymorphism in ANK1 is associated with susceptibility to type 2 diabetes in Japanese populations. Hum Mol Genet. 2012;21:3042–9. https://doi.org/10.1093/hmg/dds113.

    Article  CAS  PubMed  Google Scholar 

  55. Scott LJ, Erdos MR, Huyghe JR, et al. The genetic regulatory signature of type 2 diabetes in human skeletal muscle. Nat Commun. 2016;7:11764. https://doi.org/10.1038/ncomms11764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Civelek M, Wu Y, Pan C, et al. Genetic regulation of adipose gene expression and cardio-metabolic traits. Am J Hum Genet. 2017;100:428–43. https://doi.org/10.1016/j.ajhg.2017.01.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. van de Bunt M, Manning Fox JE, Dai X, et al. Transcript expression data from human islets links regulatory signals from genome-wide association studies for type 2 diabetes and glycemic traits to their downstream effectors. PLoS Genet. 2015;11:e1005694. https://doi.org/10.1371/journal.pgen.1005694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Puig M, Castellano D, Pantano L, et al. Functional impact and evolution of a novel human polymorphic inversion that disrupts a gene and creates a fusion transcript. PLoS Genet. 2015;11:e1005495. https://doi.org/10.1371/journal.pgen.1005495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shimajiri Y, Sanke T, Furuta H, et al. A missense mutation of Pax4 gene (R121W) is associated with type 2 diabetes in Japanese. Diabetes. 2001;50:2864–9. https://doi.org/10.2337/diabetes.50.12.2864.

    Article  CAS  PubMed  Google Scholar 

  60. Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–43. https://doi.org/10.1038/s41586-020-2308-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mauvais-Jarvis F, Smith SB, Le May C, et al. PAX4 gene variations predispose to ketosis-prone diabetes. Hum Mol Genet. 2004;13:3151–9. https://doi.org/10.1093/hmg/ddh341.

    Article  CAS  PubMed  Google Scholar 

  62. Sosa-Pineda B, Chowdhury K, Torres M, et al. The Pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature. 1997;386:399–402. https://doi.org/10.1038/386399a0.

    Article  CAS  PubMed  Google Scholar 

  63. Cammisotto PG, Bendayan M. Leptin secretion by white adipose tissue and gastric mucosa. Histol Histopathol. 2007;22:199–210. https://doi.org/10.14670/hh-22.199.

    Article  CAS  PubMed  Google Scholar 

  64. Meek TH, Morton GJ. The role of leptin in diabetes: metabolic effects. Diabetologia. 2016;59:928–32. https://doi.org/10.1007/s00125-016-3898-3.

    Article  CAS  PubMed  Google Scholar 

  65. Dubuc PU. The development of obesity, hyperinsulinemia, and hyperglycemia in ob/ob mice. Metabolism. 1976;25:1567–74. https://doi.org/10.1016/0026-0495(76)90109-8.

    Article  CAS  PubMed  Google Scholar 

  66. Bidulescu A, Dinh PC Jr, Sarwary S, et al. Associations of leptin and adiponectin with incident type 2 diabetes and interactions among African Americans: the Jackson heart study. BMC Endocr Disord. 2020;20:31. https://doi.org/10.1186/s12902-020-0511-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schmidt MI, Duncan BB, Vigo A, et al. Leptin and incident type 2 diabetes: risk or protection? Diabetologia. 2006;49:2086–96. https://doi.org/10.1007/s00125-006-0351-z.

    Article  CAS  PubMed  Google Scholar 

  68. Kim YJ, Go MJ, Hu C, et al. Large-scale genome-wide association studies in East Asians identify new genetic loci influencing metabolic traits. Nat Genet. 2011;43:990–5. https://doi.org/10.1038/ng.939.

    Article  CAS  PubMed  Google Scholar 

  69. Chen J, Spracklen CN, Marenne G, et al.. The trans-ancestral genomic architecture of glycaemic traits. bioRxiv 2020: 2020.2007.2023.217646. 10.1101/2020.07.23.217646.

  70. Spracklen CN, Shi J, Vadlamudi S, et al. Identification and functional analysis of glycemic trait loci in the China Health and Nutrition Survey. PLoS Genet. 2018;14:e1007275. https://doi.org/10.1371/journal.pgen.1007275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Arda HE, Li L, Tsai J, et al. Age-dependent pancreatic gene regulation reveals mechanisms governing human β cell function. Cell Metab. 2016;23:909–20. https://doi.org/10.1016/j.cmet.2016.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bevacqua RJ, Lam JY, Peiris H, et al.. SIX2 and SIX3 coordinately regulate functional maturity and fate of human pancreatic β cells. bioRxiv 2020: 2020.2012.2003.411033. https://doi.org/10.1101/2020.12.03.411033.

  73. Okada Y, Momozawa Y, Sakaue S, et al. Deep whole-genome sequencing reveals recent selection signatures linked to evolution and disease risk of Japanese. Nat Commun. 2018;9:1631. https://doi.org/10.1038/s41467-018-03274-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kato N, Takeuchi F, Tabara Y, et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat Genet. 2011;43:531–8. https://doi.org/10.1038/ng.834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Takeuchi F, Isono M, Nabika T, et al. Confirmation of ALDH2 as a major locus of drinking behavior and of its variants regulating multiple metabolic phenotypes in a Japanese population. Circ J. 2011;75:911–8. https://doi.org/10.1253/circj.cj-10-0774.

    Article  CAS  PubMed  Google Scholar 

  76. Xu F, Chen Y, Lv R, et al. ALDH2 genetic polymorphism and the risk of type II diabetes mellitus in CAD patients. Hypertens Res. 2010;33:49–55. https://doi.org/10.1038/hr.2009.178.

    Article  CAS  PubMed  Google Scholar 

  77. Millwood IY, Walters RG, Mei XW, et al. Conventional and genetic evidence on alcohol and vascular disease aetiology: a prospective study of 500 000 men and women in China. Lancet. 2019;393:1831–42. https://doi.org/10.1016/S0140-6736(18)31772-0.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Schrieks IC, Heil AL, Hendriks HF, et al. The effect of alcohol consumption on insulin sensitivity and glycemic status: a systematic review and meta-analysis of intervention studies. Diabetes Care. 2015;38:723–32. https://doi.org/10.2337/dc14-1556.

    Article  CAS  PubMed  Google Scholar 

  79. Chen CH, Ferreira JC, Gross ER, et al. Targeting aldehyde dehydrogenase 2: new therapeutic opportunities. Physiol Rev. 2014;94:1–34. https://doi.org/10.1152/physrev.00017.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lamparter D, Marbach D, Rueedi R, et al. Fast and rigorous computation of gene and pathway scores from SNP-based summary statistics. PLoS Comput Biol. 2016;12:e1004714. https://doi.org/10.1371/journal.pcbi.1004714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pers TH, Karjalainen JM, Chan Y, et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat Commun. 2015;6:5890. https://doi.org/10.1038/ncomms6890.

    Article  CAS  PubMed  Google Scholar 

  82. Gamazon ER, Segrè AV, van de Bunt M, et al. Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation. Nat Genet. 2018;50:956–67. https://doi.org/10.1038/s41588-018-0154-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. • Ishigaki K, Kochi Y, Suzuki A, et al. Polygenic burdens on cell-specific pathways underlie the risk of rheumatoid arthritis. Nat Genet. 2017;49:1120–5. https://doi.org/10.1038/ng.3885This article describes the Biobank Japan expression quantitative trait locus data in peripheral blood, the only known/publicly available East Asian ancestry eQTL dataset for any tissue.

    Article  CAS  PubMed  Google Scholar 

  84. Varshney A, Scott LJ, Welch RP, et al. Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. Proc Natl Acad Sci U S A. 2017;114:2301–6. https://doi.org/10.1073/pnas.1621192114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Viñuela A, Varshney A, van de Bunt M, et al. Genetic variant effects on gene expression in human pancreatic islets and their implications for T2D. Nat Commun. 2020;11:4912. https://doi.org/10.1038/s41467-020-18581-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Võsa U, Claringbould A, Westra H-J, et al.. Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis. bioRxiv 2018: 447367. 10.1101/447367.

  87. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 2020; 369: 1318-1330. 2. https://doi.org/10.1126/science.aaz1776.

Download references

Funding

CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cassandra N. Spracklen or Xueling Sim.

Ethics declarations

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spracklen, C.N., Sim, X. Progress in Defining the Genetic Contribution to Type 2 Diabetes in Individuals of East Asian Ancestry. Curr Diab Rep 21, 17 (2021). https://doi.org/10.1007/s11892-021-01388-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11892-021-01388-2

Keywords

Navigation