Skip to main content
Log in

Discrete Self-adjoint Dirac Systems: Asymptotic Relations, Weyl Functions and Toeplitz Matrices

  • Published:
Constructive Approximation Aims and scope

Abstract

We consider discrete Dirac systems as an approach to the study of the corresponding block Toeplitz matrices, which in many ways completes the famous approach via Szegő recurrences and matrix orthogonal polynomials. We prove an analog of the Christoffel–Darboux formula and derive the asymptotic relations for the analog of reproducing kernel (using Weyl–Titchmarsh functions of discrete Dirac systems). These asymptotic relations are expressed also in terms of block Toeplitz matrices. We study the case of rational Weyl–Titchmarsh functions (and GBDT version of the Bäcklund–Darboux transformation of the trivial discrete Dirac system) as well. It is shown that block diagonal plus block semi-separable Toeplitz matrices (which are easily inverted) appear in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Álvarez-Fernández, C., Ariznabarreta, G., García-Ardila, J.C., Mañas, M., Marcellán, F.: Christoffel transformations for matrix orthogonal polynomials in the real line and the non-Abelian 2D Toda lattice hierarchy. Int. Math. Res. Not. IMRN 2017, 1285–1341 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Aptekarev, A.I., Nikishin, E.M.: The scattering problem for a discrete Sturm–Liouville operator. Math. USSR Sb. 49, 325–355 (1984)

    Article  Google Scholar 

  3. Arov, D.Z., Krein, M.G.: Problem of search of the minimum of entropy in indeterminate extension problems. Funct. Anal. Appl. 15, 123–126 (1981)

    Article  Google Scholar 

  4. Breuer, J., Duits, M.: Central limit theorems for biorthogonal ensembles and asymptotics of recurrence coefficients. J. Am. Math. Soc. 30, 27–66 (2017)

    Article  MathSciNet  Google Scholar 

  5. Breuer, J., Last, Y., Simon, B.: Stability of asymptotics of Christoffel–Darboux kernels. Comm. Math. Phys. 330, 1155–1178 (2014)

    Article  MathSciNet  Google Scholar 

  6. Cieslinski, J.L.: Algebraic construction of the Darboux matrix revisited. J. Phys. A 42, Paper 404003 (2009)

  7. Daems, E., Kuijlaars, A.B.J.: A Christoffel–Darboux formula for multiple orthogonal polynomials. J. Approx. Theory 130, 190–202 (2004)

    Article  MathSciNet  Google Scholar 

  8. Damanik, D., Pushnitski, A., Simon, B.: The analytic theory of matrix orthogonal polynomials. Surv. Approx. Theory 4, 1–85 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Delsarte, Ph., Genin, Y.V., Kamp, Y.G.: Orthogonal polynomial matrices on the unit circle. IEEE Trans. Circuits Syst. CAS-2, 149–160 (1978)

  10. Eidelman, Y., Gohberg, I.: Algorithms for inversion of diagonal plus semiseparable operator matrices. Integral Equ. Oper. Theory 44, 172–211 (2002)

    Article  MathSciNet  Google Scholar 

  11. Fritzsche, B., Kirstein, B., Roitberg, I., Sakhnovich, A.L.: Weyl matrix functions and inverse problems for discrete Dirac-type self-adjoint systems: explicit and general solutions. Oper. Matrices 2, 201–231 (2008)

    Article  MathSciNet  Google Scholar 

  12. Fritzsche, B., Kirstein, B., Roitberg, I., Sakhnovich, A.L.: Discrete Dirac systems on the semiaxis: rational reflection coefficients and Weyl functions. J. Differ. Equ. Appl. 25, 294–304 (2019)

    Article  MathSciNet  Google Scholar 

  13. Gesztesy, F., Teschl, G.: On the double commutation method. Proc. Am. Math. Soc. 124, 1831–1840 (1996)

    Article  MathSciNet  Google Scholar 

  14. Gohberg, I., Kailath, T., Koltracht, I.: Linear complexity algorithms for semiseparable matrices. Integral Equ. Operator Theory 8, 780–804 (1985)

    Article  MathSciNet  Google Scholar 

  15. Golinskii, L., Nevai, P.: Szegö difference equations, transfer matrices and orthogonal polynomials on the unit circle. Commun. Math. Phys. 223, 223–259 (2001)

    Article  Google Scholar 

  16. Groenevelt, W., Koelink, E.A.: A hypergeometric function transform and matrix-valued orthogonal polynomials. Constr. Approx. 38, 277–309 (2013)

    Article  MathSciNet  Google Scholar 

  17. Gu, C., Hu, H., Zhou, X.: Darboux Transformations in Integrable Systems. Springer, Dordrecht (2005)

    Book  Google Scholar 

  18. Helson, H., Lowdenslager, D.: Prediction theory and Fourier series in several variables. Acta Math. 99, 165–202 (1958)

    Article  MathSciNet  Google Scholar 

  19. Kaashoek, M.A., Sakhnovich, A.L.: Discrete skew self-adjoint canonical system and the isotropic Heisenberg magnet model. J. Funct. Anal. 228, 207–233 (2005)

    Article  MathSciNet  Google Scholar 

  20. Katsnelson, V.E., Kirstein, B.: On the theory of matrix-valued functions belonging to the Smirnov class. In: Oper. Theory Adv. Appl. 95, pp. 299–350. Birkhäuser, Basel (1997)

  21. Kostenko, A., Sakhnovich, A., Teschl, G.: Commutation Methods for Schrödinger Operators with Strongly Singular Potentials. Math. Nachr. 285, 392–410 (2012)

    Article  MathSciNet  Google Scholar 

  22. Lubinsky, D.S.: A new approach to universality limits involving orthogonal polynomials. Ann. Math. 170, 915–939 (2009)

    Article  MathSciNet  Google Scholar 

  23. Makarov, N., Poltoratski, A.: Beurling-Malliavin theory for Toeplitz kernels. Invent. Math. 180, 443–480 (2010)

    Article  MathSciNet  Google Scholar 

  24. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991)

    Book  Google Scholar 

  25. Masani, P., Wiener, N.: On bivariate stationary processes and the factorization of matrix-valued functions. Theor. Probab. Appl. 4, 300–308 (1959)

    Article  MathSciNet  Google Scholar 

  26. Nevai, P., Freud, G.: Orthogonal polynomials and Christoffel functions. A case study. J. Approx. Theory 48, 3–167 (1986)

    Article  MathSciNet  Google Scholar 

  27. Nevai, P., Totik, V.: Christoffel functions for weights with jumps. Constr. Approx. 42, 265–280 (2015)

    Article  MathSciNet  Google Scholar 

  28. Privalov, I.I.: Boundary Properties of Analytic Functions. VEB Deutscher Verlag Wiss, Berlin (1956)

    Google Scholar 

  29. Roitberg, I., Sakhnovich, A.L.: The discrete self-adjoint Dirac systems of general type: explicit solutions of direct and inverse problems, asymptotics of Verblunsky-type coefficients and the stability of solving of the inverse problem. Zh. Mat. Fiz. Anal. Geom. 14, 532–548 (2018)

    Article  MathSciNet  Google Scholar 

  30. Rosenblum, M., Rovnyak, J.: Topics in Hardy Classes and Univalent Functions. Birkhäuser, Basel (1994)

    Book  Google Scholar 

  31. Rozanov, Yu.A.: Spectral properties of multivariate stationary processes and boundary properties of analytic matrices. Theory Probab. Appl. 5, 362–376 (1960)

    Article  MathSciNet  Google Scholar 

  32. Sakhnovich, A.L.: On a class of extremal problems. USSR-Izv. 30, 411–418 (1988)

    Article  MathSciNet  Google Scholar 

  33. Sakhnovich, A.L.: New “Verblunsky-type’’ coefficients of block Toeplitz and Hankel matrices and of corresponding Dirac and canonical systems. J. Approx. Theory 237, 186–209 (2019)

    Article  MathSciNet  Google Scholar 

  34. Sakhnovich, A.L., Sakhnovich, L.A., Roitberg, I.. Ya..: Inverse Problems and Nonlinear Evolution Equations. Solutions, Darboux Matrices and Weyl-Titchmarsh Functions. De Gruyter, Berlin (2013)

    Book  Google Scholar 

  35. Sakhnovich, L.A.: On the factorization of the transfer matrix function. Sov. Math. Dokl. 17, 203–207 (1976)

    MATH  Google Scholar 

  36. Sakhnovich, L.A.: Interpolation Theory and Its Applications. Kluwer, Dordrecht (1997)

    Book  Google Scholar 

  37. Sakhnovich, L.A.: Spectral Theory of Canonical Differential Systems, Method of Operator Identities. Birkhäuser, Basel (1999)

    Book  Google Scholar 

  38. Sakhnovich, L.A.: Levy Processes, Integral Equations, Statistical Physics: Connections and Interactions. Birkhäuser/Springer Basel AG, Basel (2012)

    Book  Google Scholar 

  39. Simon, B.: Analogs of the m-function in the theory of orthogonal polynomials on the unit circle. J. Comput. Appl. Math. 171, 411–424 (2004)

    Article  MathSciNet  Google Scholar 

  40. van Assche, W.: Orthogonal Polynomials and Painleve Equations. Cambridge University Press, Cambridge (2018)

    MATH  Google Scholar 

  41. Vandebril, R., Van Barel, M., Golub, G., Mastronardi, N.: A bibliography on semiseparable matrices. Calcolo 42, 249–270 (2005)

    Article  MathSciNet  Google Scholar 

  42. Vladimirov, V.S., Volovich, I.V.: The diophantine moment problem, orthogonal polynomials and some models of statistical physics. In: Lect. Notes in Math. 1043, pp. 289–292. Springer, Berlin (1984)

  43. Wiener, N.: On the factorization of matrices. Comment. Math. Helv. 29, 97–111 (1955)

    Article  MathSciNet  Google Scholar 

  44. Zakharov, V.E., Mikhailov, A.V.: On the integrability of classical spinor models in two-dimensional space-time. Commun. Math. Phys. 74, 21–40 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the Austrian Science Fund (FWF) under Grant No. P29177.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Sakhnovich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakhnovich, A. Discrete Self-adjoint Dirac Systems: Asymptotic Relations, Weyl Functions and Toeplitz Matrices. Constr Approx 55, 641–659 (2022). https://doi.org/10.1007/s00365-021-09530-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-021-09530-9

Keywords

Mathematics Subject Classification

Navigation