Skip to main content
Log in

Optical modeling of cellulose nanofibril self-assembled thin film with iridescence

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Nanostructure-induced structural coloration and bio-invisibility are important for camouflaging as it displays color and can be tuned and imparted in a more environmentally friendly manner. However, even though many new camouflage fabrics and technologies are invented, there is a lack of numerical electromagnetic and optical approaches to analyze the phenomenon of light scattering of camouflaging materials from nanostructures. In this study, we built and presented a successful simulation of physical coloration caused by multilayer membrane interference. We created this model based on surfactant-like cellulose nanofibrils (CNFs) that tightly stacked into photon-active microstructure and surface topology for light reflection, thus affecting the film gloss. Incident light coming at a defined wavelength or angle was studied. The effects of film height, high microstructure, and curvature on the optical properties of ITO/PET substrates were investigated. These showed the coloration is highly dependent on the nanostructure’s characteristics. This study provides a general prediction model to deal with optical multilayer systems where interference plays a vital role in optical camouflaging, etc.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Euvananont C, Junin C, Inpor K, Limthongkul P, Thanachayanont C (2008) TiO2 optical coating layers for self-cleaning applications. Ceram Int 34(4):1067–1071

    Article  CAS  Google Scholar 

  2. Agbolaghi S (2019) Settled/unsettled blend nanofibers electrospun from photoactive polymeric/nonpolymeric constituents in PBDT-DTNT:PCBM solar cells. J Appl Polym Sci:47591

  3. Sun Z, Ma C, Liu M, Cui J, Lu L, Lu J, Lou X, Jin L, Wang H, Jia C-L (2017) Ultrahigh energy storage performance of lead-free oxide multilayer film capacitors via interface engineering. Adv Mater 29(5):1604427

    Article  Google Scholar 

  4. Caicedo JC, Amaya C, Yate L, Gómez ME, Zambrano G, Alvarado-Rivera J, Muñoz-Saldaña J, Prieto P (2010) TiCN/TiNbCN multilayer coatings with enhanced mechanical properties. Appl Surf Sci 256(20):5898–5904

    Article  CAS  Google Scholar 

  5. Zenoozi S, Agbolaghi S, Nazari M, Abbasi F (2017) Thermal and optical properties of nano/micro single crystals and nanofibers obtained from semiconductive-dielectric poly(3-hexylthiophene) block copolymers. Mater Sci Semicond Process 64:85–94

    Article  CAS  Google Scholar 

  6. Iino H, Usui T, Hanna J (2015) Liquid crystals for organic thin-film transistors. Nat Commun 6:6828

    Article  CAS  Google Scholar 

  7. Swanepoel R (1984) Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films. J Phys E 17(10):896–903

    Article  CAS  Google Scholar 

  8. Kuang P, Eyderman S, Hsieh M-L, Post A, John S, Lin S-Y (2016) Achieving an accurate surface profile of a photonic crystal for near-unity solar absorption in a super thin-film architecture. ACS Nano 10(6):6116–6124

    Article  CAS  Google Scholar 

  9. Kats MA, Blanchard R, Genevet P, Capasso F (2013) Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat Mater 12(1):20–24

    Article  CAS  Google Scholar 

  10. Kolle M, Lethbridge A, Kreysing M, Baumberg JJ, Aizenberg J, Vukusic P (2013) Bio-inspired band-gap tunable elastic optical multilayer fibers. Adv Mater 25(15):2239–2245

    Article  CAS  Google Scholar 

  11. de Nooy AEJ, Besemer AC, van Bekkum H (1994) Highly selective tempo mediated oxidation of primary alcohol groups. Red Trav Chim Pays-Bas 113:165–166

    Article  Google Scholar 

  12. Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14(1):248–253

    Article  CAS  Google Scholar 

  13. Shimizu M, Fukuzumi H, Saito T, Isogai A (2013) Preparation and characterization of TEMPO-oxidized cellulose nanofibrils with ammonium carboxylate groups. Int J Biol Macromol 59:99–104

    Article  CAS  Google Scholar 

  14. Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21(14):6642–6646

    Article  CAS  Google Scholar 

  15. Huang J, Zhu H, Chen Y, Preston C, Rohrbach K, Cumings J, Hu L (2013) Highly transparent and flexible nanopaper transistors. ACS Nano 7(3):2106–2113

    Article  CAS  Google Scholar 

  16. Wicklein B, Kocjan A, Salazar-Alvarez G, Carosio F, Camino G, Antonietti M, Bergström L (2014) Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat Nanotechnol 10(3):277–283

    Article  Google Scholar 

  17. Olsson RT, Samir MASA, Salazar-Alvarez G, Belova L, Ström V, Berglund LA, Ikkala O, Nogués J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5(8):584–588

    Article  CAS  Google Scholar 

  18. Wang B, Benitez AJ, Lossada F, Merindol R, Walther A (2016) Bioinspired mechanical gradients in cellulose nanofibril/polymer nanopapers. Angew. Chemie - Int. Ed. 55(20):5966–5970

    Article  CAS  Google Scholar 

  19. Cai J, Liu S, Feng J, Kimura S, Wada M, Kuga S, Zhang L (2012) Cellulose-silica nanocomposite aerogels by in-situ formation of silica in cellulose gel. Angew Chemie - Int Ed 51(9):2076–2079

    Article  CAS  Google Scholar 

  20. Karabulut E, Pettersson T, Ankerfors M, Wågberg L (2012) Adhesive layer-by-layer films of carboxymethylated cellulose nanofibril à dopamine covalent bioconjugates inspired by marine. ACS Nano 6(6):4731–4739

    Article  CAS  Google Scholar 

  21. Fukuzumi H, Saito T, Isogai A (2013) Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr Polym 93(1):172–177

    Article  CAS  Google Scholar 

  22. Wu Z-Y, Li C, Liang H-W, Chen J-F, Yu S-H (2013) Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew Chemie 125(10):2997–3001

    Article  Google Scholar 

  23. Shopsowitz KE, Qi H, Hamad WY, MacLachlan MJ (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468(7322):422–426

    Article  CAS  Google Scholar 

  24. Lu H, Behm M, Leijonmarck S, Lindbergh G, Cornell A (2016) Flexible paper electrodes for Li-ion batteries using low amount of TEMPO-oxidized cellulose nanofibrils as binder. ACS Appl Mater Interfaces 8(28):18097–18106

    Article  CAS  Google Scholar 

  25. Links DA (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials †. Soft Matter 7:8804–8809

    Article  Google Scholar 

  26. Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165

    Article  CAS  Google Scholar 

  27. Mokhena TC, Sefadi JS, Sadiku ER, John MJ, Mochane MJ, Mtibe A (2018) Thermoplastic processing of PLA/cellulose nanomaterials composites. Polymers (Basel) 10(12)

  28. Lagerwall JPF, Schütz C, Salajkova M, Noh J, Hyun Park J, Scalia G, Bergström L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6(1):e80–e80

    Article  CAS  Google Scholar 

  29. Iwamoto S, Isogai A, Iwata T (2011) Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromolecules 12(3):831–836

    Article  CAS  Google Scholar 

  30. R. Chen, L. Zhang, D. Zang, and W. Shen, Wetting and drying of colloidal droplets: physics and pattern formation. Book: Advances in colloid science patterns (IntechOpen, 2017)

  31. Troparevsky MC, Sabau AS, Lupini AR, Zhang Z (2010) Transfer-matrix formalism for the calculation of optical response in multilayer systems: from coherent to incoherent interference. Opt Express 18(24):24715

    Article  Google Scholar 

  32. J. M. Vaughan, The Fabry–Perot interferometer: history, theory, practice and applications (Taylor & Francis Group, 1989)

  33. Xu X, Zhou H, Zhou G, Lo Hsieh Y (2020) Photonic thin films assembled from amphiphilic cellulose nanofibrils displaying iridescent full-colors. ACS Appl Bio Mater 3(7):4522–4530

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (No. 51903094) and the Science and Technology Program of Guangzhou (No. 2019050001). The work is also partially supported by the National Key R&D Program of China (No. 2016YFB0401502), Program of Chang Jiang Scholars and Innovative Research Teams in Universities (No. IRT 17R40), Guangdong Provincial Laboratory of the Optical Information Materials and Technology (No. 2017B030301007), 111 project and Yunnan expert workstation (2017IC011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuezhu Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 601 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Xu, Z., Zhou, G. et al. Optical modeling of cellulose nanofibril self-assembled thin film with iridescence. Colloid Polym Sci 299, 1139–1145 (2021). https://doi.org/10.1007/s00396-021-04834-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04834-5

Keywords

Navigation