Skip to main content
Log in

LC-ESI-MS/MS Method for the Profiling of Glycerophospholipids and its Application to the Analysis of Tobacco Hairy Roots as Early Indicators of Phenol Pollution

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The growing impact of organic and inorganic pollutants on the environment has led to the development of numerous strategies to counteract this effect. Among all, green technologies such as phytoremediation, has won relevance for its low cost as well as being an eco-friendly and sustainable process. In the past years, tobacco hairy roots (HRs) have become a good example of the effectiveness of plants as a tool for removing different pollutants. In this sense, the understanding of the intracellular mechanisms involved in the phytoremediation process has become of great interest. Glycerophospholipids (GLPs) are a key factor on intracellular signaling, given that they can activate different pathways, despite there is not enough information available about their levels and fluctuation under certain stress conditions. The aim of this work was to develop of a new chromatographic method coupled to electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) with selected reaction monitoring (SRM) and data dependent scan detection for the evaluation of GLP profile after the exposure to phenol, to get a better understanding of lipids turnover and their effect on signaling pathways. This highly sensitive method allows the identification, separation and quantification in less than a 20 min-run of the eleven most relevant GPL species present in hairy tobacco root extracts after phenol exposure, and is suitable for evaluating small changes in GPL levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Agostini E, Talano MA, González PS et al (2013) Application of hairy roots for phytoremediation: what makes them an interesting tool for this purpose? Appl Microbiol Biotechnol 97:1017–1030

    Article  CAS  Google Scholar 

  2. Ludwig-Müller J, Xu J, Agostini E, Georgiev MI (2014) Root Eng 40:387–405. https://doi.org/10.1007/978-3-642-54276-3

    Article  Google Scholar 

  3. Mehrotra S, Srivastava V, Rahman LU, Kukreja AK (2015) Hairy root biotechnology—indicative timeline to understand missing links and future outlook. Protoplasma 252:1189–1201. https://doi.org/10.1007/s00709-015-0761-1

    Article  CAS  PubMed  Google Scholar 

  4. Paisio CE, Agostini E, González PS (2019) Application of two bioassays as potential indicators of phenol phytoremediation efficiency by tobacco hairy roots. Environ Technol. https://doi.org/10.1080/09593330.2019.1649471

    Article  PubMed  Google Scholar 

  5. Kumar M, Mitra A (2017) Hairy root culture of Nicotiana tabacum (Tobacco) as a platform for gene manipulation of secondary metabolism. Prod Plant Deriv Nat Compd Hairy Root Cult. https://doi.org/10.1007/978-3-319-69769-7_8

    Article  Google Scholar 

  6. Alderete LGS, Talano MA, Ibáñez SG et al (2009) Establishment of transgenic tobacco hairy roots expressing basic peroxidases and its application for phenol removal. J Biotechnol 139:273–279. https://doi.org/10.1016/j.jbiotec.2008.11.008

    Article  CAS  Google Scholar 

  7. Alderete LGS, Ibáñez SG, Agostini E, Medina MI (2012) Phytoremediation of phenol at pilot scale by tobacco hairy roots. Int J Environ Sci 3:398–407. https://doi.org/10.6088/ijes.2012030131038

    Article  CAS  Google Scholar 

  8. Paisio CE, Agostini E, González PS, Bertuzzi ML (2009) Lethal and teratogenic effects of phenol on Bufo arenarum embryos. J Hazard Mater 167:64–68. https://doi.org/10.1016/j.jhazmat.2008.12.084

    Article  CAS  PubMed  Google Scholar 

  9. Alderete LGS, Agostini E, Medina MI (2011) Antioxidant response of tobacco (Nicotiana tabacum) hairy roots after phenol treatment. Plant Physiol Biochem 49:1020–1028. https://doi.org/10.1016/j.plaphy.2011.07.009

    Article  CAS  Google Scholar 

  10. Ibañez SG, Villasuso AL, Racagni GE et al (2016) Phenol modulates lipid kinase activities in Vicia sativa plants. Environ Exp Bot 122:109–114. https://doi.org/10.1016/j.envexpbot.2015.09.005

    Article  CAS  Google Scholar 

  11. Alderete LGS, Racagni G, Agostini E, Medina MI (2012) Phospholipid turnover and phospholipase D activity in tobacco hairy roots exposed to phenol. Environ Exp Bot 77:141–145. https://doi.org/10.1016/j.envexpbot.2011.11.006

    Article  CAS  Google Scholar 

  12. Alderete LGS, Racagni G, Agostini E, Medina MI (2019) Is the PLC pathway involved in the response to phenol treatment in tobacco hairy roots? Vitro Cell Dev Biol Plant 55:549–557. https://doi.org/10.1007/s11627-019-09968-4

    Article  CAS  Google Scholar 

  13. Singh A, Bhatnagar N, Pandey A, Pandey GK (2015) Plant phospholipase C family: regulation and functional role in lipid signaling. Cell Calcium 58:139–146. https://doi.org/10.1016/j.ceca.2015.04.003

    Article  CAS  PubMed  Google Scholar 

  14. Hong Y, Zhao J, Guo L et al (2016) Plant phospholipases D and C and their diverse functions in stress responses. Prog Lipid Res 62:55–74. https://doi.org/10.1016/j.plipres.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  15. Woodcock EA, Kistler PM, Ju YK (2009) Phosphoinositide signalling and cardiac arrhythmias. Cardiovasc Res 82:286–295. https://doi.org/10.1093/cvr/cvn283

    Article  CAS  PubMed  Google Scholar 

  16. Van Hoogevest P, Wendel A (2014) The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur J Lipid Sci Technol 116:1088–1107. https://doi.org/10.1002/ejlt.201400219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jing L, Xuling W, Ting Z et al (2015) A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci 10:81–98

    Article  Google Scholar 

  18. Berry KAZ, Murphy RC, Kosmider B, Mason RJ (2017) Lipidomic characterization and localization of phospholipids in the human lung. J Lipid Res 58:926–933. https://doi.org/10.1194/jlr.M074955

    Article  Google Scholar 

  19. Olsson P, Holmbäck J, Herslöf B (2012) Separation of lipid classes by HPLC on a cyanopropyl column. Lipids 47:93–99. https://doi.org/10.1007/s11745-011-3627-0

    Article  CAS  PubMed  Google Scholar 

  20. Cífková E, Holčapek M, Lísa M et al (2015) Determination of lipidomic differences between human breast cancer and surrounding normal tissues using HILIC-HPLC/ESI-MS and multivariate data analysis. Anal Bioanal Chem 407:991–1002. https://doi.org/10.1007/s00216-014-8272-z

    Article  CAS  PubMed  Google Scholar 

  21. Buszewski B, Noga S (2012) Hydrophilic interaction liquid chromatography (HILIC)-a powerful separation technique. Anal Bioanal Chem 402:231–247. https://doi.org/10.1007/s00216-011-5308-5

    Article  CAS  PubMed  Google Scholar 

  22. Mal M, Wong S (2011) A HILIC-based UPLC/MS method for the separation of lipid classes from plasma. Waters Appl Note 1–5

  23. Schwalbe-Herrmann M, Willmann J, Leibfritz D (2010) Separation of phospholipid classes by hydrophilic interaction chromatography detected by electrospray ionization mass spectrometry. J Chromatogr A 1217:5179–5183. https://doi.org/10.1016/j.chroma.2010.05.014

    Article  CAS  PubMed  Google Scholar 

  24. Netto JD, Wong S, Ritchie M, High resolution separation of phospholipids using a novel orthogonal two-dimensional UPLC/QTof MS system configuration. Waters 1–8

  25. Blanksby SJ, Mitchell TW (2010) Advances in mass spectrometry for lipidomics. Annu Rev Anal Chem 3:433–465. https://doi.org/10.1146/annurev.anchem.111808.073705

    Article  CAS  Google Scholar 

  26. Pati S, Nie B, Arnold RD, Cummings BS (2016) Extraction, chromatographic and mass spectrometric methods for lipid analysis. Biomed Chromatogr 30:695–709. https://doi.org/10.1002/bmc.3683

    Article  CAS  PubMed  Google Scholar 

  27. Xu S-L, Wei F, Xie Y et al (2018) Research advances based on mass spectrometry for profiling of triacylglycerols in oils and fats and their applications. Electrophoresis 39:1558–1568. https://doi.org/10.1002/elps.201700481

    Article  CAS  PubMed  Google Scholar 

  28. Cajka T, Fiehn O (2014) Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. TrAC Trends Anal Chem 61:192–206. https://doi.org/10.1016/j.trac.2014.04.017

    Article  CAS  Google Scholar 

  29. Murasnige T, Skoog F (1962) A revised medium for rapid growth and bio agsays with tohaoco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  Google Scholar 

  30. Alderete LGS, Guido ME, Agostini E, Mas P (2018) Identification and characterization of key circadian clock genes of tobacco hairy roots: putative regulatory role in xenobiotic metabolism. Environ Sci Pollut Res 25:1597–1608. https://doi.org/10.1007/s11356-017-0579-9

    Article  CAS  Google Scholar 

  31. Dyer WJ, Bligh EG (1959) Can J Biochem Physiol 37:911–917. https://doi.org/10.1139/cjm2014-0700

    Article  PubMed  Google Scholar 

  32. Alderete LGS, Flor S, Lucangioli S, Agostini E (2020) Impact of phenol on the glycerophospholipid turnover and potential role of circadian clock in the plant response against this pollutant in tobacco hairy roots. Plant Physiol Biochem 151:411–420. https://doi.org/10.1016/j.plaphy.2020.03.041

    Article  CAS  Google Scholar 

  33. Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem 75:3019–3030. https://doi.org/10.1021/ac020361s

    Article  CAS  PubMed  Google Scholar 

  34. Hsu FF, Turk J (2005) Studies on phosphatidylserine by tandem quadrupole and multiple stage quadrupole ion-trap mass spectrometry with electrospray ionization: structural characterization and the fragmentation processes. J Am Soc Mass Spectrom 16:1510–1522. https://doi.org/10.1016/j.jasms.2005.04.018

    Article  CAS  PubMed  Google Scholar 

  35. Hsu F-F, Turk J (2002) Studies on glycerophospholipids with triple quadrupole tandem mass spectrometry with electrospray ionization: structural characterization and fragmentation processes. J Am Mass Spectrom 0305:79–80. https://doi.org/10.1016/S1044-0305(01)00285-9

    Article  Google Scholar 

  36. Hsu FF, Turk J (2009) Electrospray ionization with low-energy collisionally activated dissociation tandem mass spectrometry of glycerophospholipids: mechanisms of fragmentation and structural characterization. J Chromatogr B Anal Technol Biomed Life Sci 877:2673–2695. https://doi.org/10.1016/j.jchromb.2009.02.033

    Article  CAS  Google Scholar 

  37. Hsu FF, Turk J (2003) Electrospray ionization/tandem quadrupole mass spectrometric studies on phosphatidylcholines: the fragmentation processes. J Am Soc Mass Spectrom 14:352–363. https://doi.org/10.1016/S1044-0305(03)00064-3

    Article  CAS  PubMed  Google Scholar 

  38. Pulfer M, Murphy RC (2003) Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev 22:332–364. https://doi.org/10.1002/mas.10061

    Article  CAS  PubMed  Google Scholar 

  39. Frega NG, Pacetti D, Boselli E (2011) Characterization of phospholipid molecular species by means of HPLC-tandem mass spectrometry. Tandem Mass Spectrom Appl Princ. https://doi.org/10.5772/1327vb

    Article  Google Scholar 

  40. Takatera A, Takeuchi A, Saiki K et al (2006) Quantification of lysophosphatidylcholines and phosphatidylcholines using liquid chromatography-tandem mass spectrometry in neonatal serum. J Chromatogr B Anal Technol Biomed Life Sci 838:31–36. https://doi.org/10.1016/j.jchromb.2006.03.006

    Article  CAS  Google Scholar 

  41. Nakanishi H, Iida Y, Shimizu T, Taguchi R (2010) Separation and quantification of sn-1 and sn-2 fatty acid positional isomers in phosphatidylcholine by RPLC-ESIMS/MS. J Biochem 147:245–256. https://doi.org/10.1093/jb/mvp171

    Article  CAS  PubMed  Google Scholar 

  42. Giera M, Ioan-Facsinay A, Toes R et al (2012) Lipid and lipid mediator profiling of human synovial fluid in rheumatoid arthritis patients by means of LC-MS/MS. Biochim Biophys Acta 1821:1415–1424. https://doi.org/10.1016/j.bbalip.2012.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xiong Y, Zhao YY, Goruk S et al (2012) Validation of an LC-MS/MS method for the quantification of choline-related compounds and phospholipids in foods and tissues. J Chromatogr B Anal Technol Biomed Life Sci 911:170–179. https://doi.org/10.1016/j.jchromb.2012.10.038

    Article  CAS  Google Scholar 

  44. Zhao YY, Xiong Y, Curtis JM (2011) Measurement of phospholipids by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry: the determination of choline containing compounds in foods. J Chromatogr A 1218:5470–5479. https://doi.org/10.1016/j.chroma.2011.06.025

    Article  CAS  PubMed  Google Scholar 

  45. Uhl O, Glaser C, Demmelmair H, Koletzko B (2011) Reversed phase LC/MS/MS method for targeted quantification of glycerophospholipid molecular species in plasma. J Chromatogr B Anal Technol Biomed Life Sci 879:3556–3564. https://doi.org/10.1016/j.jchromb.2011.09.043

    Article  CAS  Google Scholar 

  46. Okuley J, Lightner J, Feldmann K et al (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6:147. https://doi.org/10.2307/3869682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Browse J, McConn M, James D, Miquel M (1993) Mutants of Arabidopsis deficient in the synthesis of alpha -linolenate. Biochemical and genetic characterization of the endoplasmic reticulum linoleoyl desaturase. J Biol Chem 268:16345–16351

    Article  CAS  Google Scholar 

  48. Wallis JG, Browse J (2002) Mutants of Arabidopsis reveal many roles for membrane lipids. Prog Lipid Res 41:254–278. https://doi.org/10.1016/S0163-7827(01)00027-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge CONICET (Consejo Nacional de Investigaciones Científicas y Tecnológicas), Universidad de Buenos Aires and Universidad Nacional de Río Cuarto for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Lucangioli.

Ethics declarations

Conflicts of Interest

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flor, S., Sosa Alderete, L., Dobrecky, C. et al. LC-ESI-MS/MS Method for the Profiling of Glycerophospholipids and its Application to the Analysis of Tobacco Hairy Roots as Early Indicators of Phenol Pollution. Chromatographia 84, 597–608 (2021). https://doi.org/10.1007/s10337-021-04034-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-021-04034-x

Keywords

Navigation