Skip to main content
Log in

Study of Extensive and Nonextensive Entropy of RbCl Quantum Well Qubit in an Asymmetric Gaussian Potential

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We have presented extensive and nonextensive entropy of RbCl quantum well qubits (QWQ). To this end, we have considered an electron that is coupled to the LO-phonon in RbCl quantum well to determine the energy eigenvalues and eigenfunctions of the ground and first excited states of the system using the Pekar variational method. Here, we have used extensive and nonextensive entropies like Shannon and Tsallis to study decoherence of RbCl QWQ for different parameters. Our results show that the entropies have the oscillatory periodic evolution as a function of time due to the form of the confinement potential. According to the obtained results, we can see that the entropies oscillate under a sinusoidal envelope with enhancing the confinement parameters. These results may be very helpful in the transmission of information in the nanostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Li, K.-X. Guo, S. Shao, Polaron effects on the optical rectification in a two-dimensional quantum pseudodot system. Opt. Quant. Electron. 44(10–11), 493–502 (2012)

    Article  Google Scholar 

  2. R. Khordad, B. Vaseghi, Magnetic properties in three electrons under Rashba spin-orbit interaction and magnetic field. Int. J. Quant. Chem. 119(20), e25994 (2019)

    Article  Google Scholar 

  3. R. Khordad, B. Vaseghi, Effects temperature, pressure and spin–orbit interaction simultaneously on third harmonic generation of wedge-shaped quantum dots. Chin. J. Phys. 59, 473–480 (2019)

    Article  MathSciNet  Google Scholar 

  4. L.-Q. Feng, J.-L. Xiao, The effects of temperature and electric field on the properties of the polaron in a RbCl quantum pseudodot. Opt. Quant. Electron. 48(10), 459 (2016)

    Article  Google Scholar 

  5. L.-Q. Feng, J.-L. Xiao, The effects of magnetic field and hydrogen-like impurity on RbCl quantum pseudodot qubit. Opt. Quant. Electron. 49(9), 304 (2017)

    Article  Google Scholar 

  6. R. Khordad, A. Ghanbari, Effect of phonons on optical properties of RbCl quantum pseudodot qubits. Opt. Quant. Electron. 49(2), 76 (2017)

    Article  Google Scholar 

  7. R. Khordad et al., Optical and electronic properties of anisotropic parabolic quantum disks in the presence of tilted magnetic fields. Phys. B Cond. Matter 407(3), 533–538 (2012)

    Article  ADS  Google Scholar 

  8. R. Khordad et al., Quantum wire with triangle cross section: optical properties. Commun. Theor. Phys. 57(6), 1076 (2012)

    Article  ADS  Google Scholar 

  9. W. Qiu, J.-L. Xiao, C.-Y. Cai, The coherence time of asymmetric gaussian confinement potential quantum well qubit. J. Low Temp. Phys. 198(5), 233–240 (2020)

    Article  ADS  Google Scholar 

  10. E. Togan et al., Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466(7307), 730–734 (2010)

    Article  ADS  Google Scholar 

  11. R. Roloff et al., Electric g tensor control and spin echo of a hole-spin qubit in a quantum dot molecule. New J. Phys. 12(9), 093012 (2010)

    Article  ADS  Google Scholar 

  12. M.A. Nielsen, I.L. Chuang, Quantum Information and Quantum Computation, 2nd edn. (Cambridge University Press, Cambridge, 2000), p. 23

    MATH  Google Scholar 

  13. M. Mosca, Quantum Algorithms Computational Complexity (Springer, New York, 2012).

    Google Scholar 

  14. G. Passante et al., Experimental detection of nonclassical correlations in mixed-state quantum computation. Phys. Rev. A 84(4), 044302 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  15. R. Khordad, H.R. Sedehi, Comparison of bound magneto-polaron in circular, elliptical, and triangular quantum dot qubit. Opt. Quant. Electron. 52(10), 1–12 (2020)

    Article  Google Scholar 

  16. R. Khordad, Effect of impurity bound polaron on optical absorption in a GaAs modified Gaussian quantum dot. Opt. Quant. Electron. 48(4), 251 (2016)

    Article  MathSciNet  Google Scholar 

  17. C. Weedbrook et al., Gaussian quantum information. Rev. Mod. Phys. 84(2), 621 (2012)

    Article  ADS  Google Scholar 

  18. G. Feng, G. Xu, G. Long, Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110(19), 190501 (2013)

    Article  ADS  Google Scholar 

  19. P. Schindler et al., Experimental repetitive quantum error correction. Science 332(6033), 1059–1061 (2011)

    Article  ADS  Google Scholar 

  20. J.-L. Xiao, Effects of hydrogen-like impurity on the coherence time of asymmetric Gaussian confinement potential quantum well qubit. Superlatt. Microstruct. 135, 106279 (2019)

    Article  Google Scholar 

  21. Y. Sun, J.-L. Xiao, Coherence effects of the strongly-coupled optical polaron-level qubit in a quantum well with asymmetrical semi-exponential potential. Superlatt. Microstruct. 145, 106617 (2020)

    Article  Google Scholar 

  22. X.-J. Miao, Y. Sun, J.-L. Xiao, The effect of temperature on strong-coupling magnetopolaron in an asymmetrical Gaussian potential quantum well. Int. J. Mod. Phys. B 34(12), 2050114 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  23. B. Donfack et al., Cumulative effects of temperature, magnetic field and Spin orbit Interaction (SOI) on the properties of magnetopolaron in RbCl quantum well. Chin. J. Phys. 66, 573–579 (2020)

    Article  MathSciNet  Google Scholar 

  24. Y. Gao et al., Molecular engineering of organic–inorganic hybrid perovskites quantum wells. Nat. Chem. 11(12), 1151–1157 (2019)

    Article  Google Scholar 

  25. H.R. Sedehi, R. Khordad, Study of RbCl quantum pseudodot qubits by using of non-extensive entropies. Indian J. Phys. 94, 1–7 (2019)

    Google Scholar 

  26. Z.-H. Liang, J.-L. Xiao, Effect of electric field on RbCl quantum pseudodot qubit. Indian J. Phys. 92(4), 437–440 (2018)

    Article  ADS  Google Scholar 

  27. R. Khordad, S. Goudarzi, H. Bahramiyan, Effect of temperature on lifetime and energy states of bound polaron in asymmetrical Gaussian quantum well. Indian J. Phys. 90(6), 659–664 (2016)

    Article  ADS  Google Scholar 

  28. X.-J. Ma, J.-L. Xiao, The influences of electric field and temperature on state energies of a strong-coupling polaron in an asymmetric Gaussian potential quantum well. Chin. J. Phys. 56(2), 561–566 (2018)

    Article  Google Scholar 

  29. Y. Sun, J.-L. Xiao, The magnetic field effect on the coherence time of qubit in RbCl crystal quantum pseudodot. Opt. Quant. Electron. 51(4), 110 (2019)

    Article  Google Scholar 

  30. R. Khordad, H.R. Sedehi, Application of non-extensive entropy to study of decoherence of RbCl quantum dot qubit: tsallis entropy. Superlatt. Microstruct. 101, 559–566 (2017)

    Article  ADS  Google Scholar 

  31. L. Mausner, T. Prach, S. Srivastava, Production of 82Sr by proton irradiation of RbCl. Int. J. Rad. Appl. Instrum. A Appl. Rad. Isotopes 38(3), 181–184 (1987)

    Article  Google Scholar 

  32. X. Liu et al., Multifunctional RbCl dopants for efficient inverted planar perovskite solar cell with ultra-high fill factor, negligible hysteresis and improved stability. Nano Energy 53, 567–578 (2018)

    Article  Google Scholar 

  33. S.A. Rice, W. Klemperer, Spectra of the alkali halides. II. The infrared spectra of the sodium and potassium halides, RbCl, and CsCl. J. Chem. Phys. 27(2), 573–579 (1957)

    Article  ADS  Google Scholar 

  34. Y. Brada, Infrared emissions of the F center and of compound color centers in RbCl. J. Chem. Phys. 58(9), 3959–3974 (1973)

    Article  ADS  Google Scholar 

  35. Y. Sun, Z.-H. Ding, J.-L. Xiao, The effect of phonons in RbCl quantum pseudodot qubits. J. Elect. Mater. 45(7), 3576–3580 (2016)

    Article  ADS  Google Scholar 

  36. X. Li et al., Variational approaches to quantum impurities: from the Fröhlich polaron to the angulon. Mol. Phys. 117(15–16), 1981–1988 (2019)

    Article  ADS  Google Scholar 

  37. M. Servatkhah, Study of RbCl quantum pseudo-dot qubits using Shannon and Laplace entropies. Opt. Quant. Electron. 52(2), 1–11 (2020)

    Article  Google Scholar 

  38. J.-L. Xiao, Influences of temperature and impurity on excited state of bound polaron in the parabolic quantum dots. Superlatt. Microstruct. 70, 39–45 (2014)

    Article  ADS  Google Scholar 

  39. M. Tiotsop et al., The effect of temperature on the lifetime and Shannon entropy of a magnetopolaron in a RbCl triangular quantum dot. Chin. J. Phys. 54(5), 795–801 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Ghanbari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibinejad, M., Ghanbari, A. Study of Extensive and Nonextensive Entropy of RbCl Quantum Well Qubit in an Asymmetric Gaussian Potential. J Low Temp Phys 203, 369–380 (2021). https://doi.org/10.1007/s10909-021-02591-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02591-x

Keywords

Navigation