Skip to main content
Log in

Attachment rate characteristics of different wide used aerosol sources in indoor air

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, six different aerosol sources, used in everyday life, were investigated to analyze parameters such as concentration, size distributions, and dynamics: regular and electronic cigarettes, incense, candles, mosquito coils, and cooking. During the experiments, the aerosol particle count ranged from 200 to 2·105 cm−3. The number, mass, and specific surface area of the aerosol size distributions were measured by a Model 2702 M diffusion aerosol spectrometer (DAS) with a range of 5 nm to 10 μm. The attachment rate of radon decay products to aerosol particles is calculated depending on their size distribution/ The use of household sources of aerosols (heat treatment of food, smoking, candles, etc.) result in an increase in the concentration of aerosol particles by more than an order of magnitude, mainly due to the generation of ultrafine aerosols with number median diameter 64–92 nm and GSD 1.45–1.84. The mass distribution is dominated by particles with a distribution maximum in the range of 2–5 μm. The attachment of radon decay products to aerosols is associated with ultrafine particles with diameter < 200 nm. The median diameter of the rate of attachment to aerosols is 130 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jenkins PL, Phillips TJ, Mulberg EJ, Hui SP. Activity patterns of Californians: use of and proximity to indoor pollutant sources. Atmos Environ Part A. 1992;26:2141–8.

    Google Scholar 

  2. Roy AA, Baxla SP, Gupta T, Bandyopadhyaya R, Tripathi SN. Particles emitted from indoor combustion sources: size distribution measurement and chemical analysis. Inhal Toxicol. 2009;21:837–48.

    CAS  Google Scholar 

  3. Lionel T, Martin RJ, Brown NJ. A comparative study of combustion in kerosene heaters. Environ Sci Technol. 1986;20:78–85.

    CAS  Google Scholar 

  4. Smith KR, Khalip MAK, Rasmussen RA, Thorneloe SA, Manegdeg F, Apte M. Greenhouse gases from biomass and fossil fuel stoves. Fuel. 1993;26:479–505.

    CAS  Google Scholar 

  5. Zhang J, Smith KR, Uma R, Ma Y, Kishore VVN, Lata K, et al. Carbon monoxide from cookstoves in developing countries: 2. Exposure potentials. Chemosphere Global Change Sci. 1999;1:367–75.

    CAS  Google Scholar 

  6. Abt E, Suh HH, Catalano P, Koutrakis P. Relative contribution of outdoor and indoor particle sources to indoor concentrations. Environ Sci Technol. 2000;34:3579–87.

    CAS  Google Scholar 

  7. Brauer M, Hirtle R, Lang B, Ott W. Assessment of indoor fine aerosol contributions from environmental tobacco smoke and cooking with a portable nephelometer. J Expo Anal Environ Epidemiol. 2000;10:136–44.

    CAS  Google Scholar 

  8. Knight L, Levin A, Mendenhall C. Candles and incense as potential sources of indoor air pollution: market analysis and literature review (EPA/600/R-01/001). EPA Res Dev. 2001:1–46.

  9. Morawska L, He C, Hitchins J, Gilbert D, Parappukkaran S. The relationship between indoor and outdoor airborne particles in the residential environment. Atmos Environ. 2001;35:3463–73.

    CAS  Google Scholar 

  10. Smith KR. What’s cooking? A brief update. Energy for sustainable development, vol. 14: Elsevier Ltd; 2010. p. 251–2. Available from. https://doi.org/10.1016/j.esd.2010.10.002.

  11. Lam NL, Smith KR, Gauthier A, Bates MN. Kerosene: a review of household uses and their hazards in low-and middle-income countries. J Toxicol Environ Health B Crit Rev. 2012;15:396–432.

    CAS  Google Scholar 

  12. Cheng YS, Bechtold WE, Yu CC, Hung IF, Cheng YS, Bechtold WE. Incense smoke : characterization and dynamics in indoor environments. Aerosol Sci Technol. 1995;23:271–81.

    CAS  Google Scholar 

  13. Jan AT, Azam M, Siddiqui K, Ali A, Choi I, Haq QMR. Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. Int J Mol Sci. 2015;16:29592–630.

    CAS  Google Scholar 

  14. Keith CH, Derrick JC. Measurement of the particle size distribution and concentration of cigarette smoke by the “conifuge.”. J Colloid Sci. 1960;15:340–56.

    CAS  Google Scholar 

  15. Chang PT, Peters LK, Ueno Y. Particle size distribution of mainstream cigarette smoke undergoing dilution. Aerosol Sci Technol. 1985;4:191–207.

    Google Scholar 

  16. Ji X, Le Bihan O, Ramalho O, Mandin C, D’Anna B, Martinon L, et al. Characterization of particles emitted by incense burning in an experimental house. Indoor Air. 2010;20:147–58.

    CAS  Google Scholar 

  17. Ji JH, Bae GN, Hwang J. Characteristics of aerosol charge neutralizers for highly charged particles. J Aerosol Sci. 2004;35:1347–58.

    CAS  Google Scholar 

  18. Jackso WG, Begbie CM. Additions and corrections. Inorg Chem. 1984;23:2728.

    Google Scholar 

  19. Sahu SK, Tiwari M, Bhangare RC, Pandit GG. Particle size distribution of mainstream and exhaled cigarette smoke and predictive deposition in human respiratory tract. Aerosol Air Qual Res. 2013;13:324–32.

    Google Scholar 

  20. Manoukian A, Temime-Roussel B, Nicolas M, Maupetit F, Quivet E, Wortham H. Characteristics of emissions of air pollutants from incense and candle burning in an experimental house, Indoor Air 2011 - 12th International Conference on Indoor Air Quality and Climate, vol. 1; 2011. p. 764–9.

  21. McCusker K, Hiller FC, Wilson JD, Mazumder MK, Bone R. Aerodynamic sizing of tobacco smoke particulate from commercial cigarettes. Arch Environ Health. 1983;38:215–8.

    CAS  Google Scholar 

  22. Morawska L, Thomas S, Jamriska M, Johnson G. The modality of particle size distributions of environmental aerosols. Atmos Environ. 1999;33:4401–11.

    CAS  Google Scholar 

  23. Li X, Kong H, Zhang X, Peng B, Nie C, Shen G, et al. Characterization of particle size distribution of mainstream cigarette smoke generated by smoking machine with an electrical low pressure impactor. J Environ Sci. 2014;26:827–33. The research Centre for eco-Environmental Sciences, Chinese Academy of Sciences. Available from. https://doi.org/10.1016/S1001-0742(13)60472-6.

    Article  Google Scholar 

  24. Li W, Hopke PK. Initial size distributions and hygroscopicity of indoor combustion aerosol particles. Aerosol Sci Technol. 1993;19:305–16.

    CAS  Google Scholar 

  25. King BA, Patel R, Nguyen KH, Dube SR. Trends in awareness and use of electronic cigarettes among US adults, 2010-2013. Nicotine Tobacco Res. 2015;17:219–27.

    Google Scholar 

  26. Pagels J, Wierzbicka A, Nilsson E, Isaxon C, Dahl A, Gudmundsson A, et al. Chemical composition and mass emission factors of candle smoke particles. J Aerosol Sci. 2009;40:193–208.

    CAS  Google Scholar 

  27. Hu T, Singer BC, Logue JM. Compilation of Published PM2 . 5 Emission Rates for Cooking , Candles and Incense for Use in Modeling of Exposures in Residences; 2012. p. 1–29. Available from: http://eta-publications.lbl.gov/sites/default/files/brett_singer_-_compilation_of_published_pm_2.5_emission_rates_for_cooking_candles_and_incense_for_the_use_in_modeling_of_exposeres_in_residences.pdf

  28. See SW, Balasubramanian R. Characterization of fine particle emissions from incense burning. Building and environment, vol. 46: Elsevier Ltd; 2011. p. 1074–80. Available from. https://doi.org/10.1016/j.buildenv.2010.11.006.

  29. Goel A, Wathore R, Chakraborty T, Agrawal M. Characteristics of exposure to particles due to incense burning inside temples in Kanpur, India. Aerosol Air Quality Res. 2017;17:608–15.

    CAS  Google Scholar 

  30. Chang JY, Lin JM. Aliphatic aldehydes and allethrin in mosquito-coil smoke. Chemosphere. 1998;36:617–24.

    CAS  Google Scholar 

  31. Liu W, Zhang J, Hashim JH, Jalaludin J, Hashim Z, Goldstein BD. Mosquito coil emissions and health implications. Environ Health Perspect. 2003;111:1454–60.

    CAS  Google Scholar 

  32. Seaton A, Godden D, MacNee W, Donaldson K. Particulate air pollution and acute health effects. Lancet. 1995;345:176–8.

    CAS  Google Scholar 

  33. Schwartz J, Dockery DW, Neas LM. Is daily mortality associated specifically with fine particles? J Air Waste Manag Assoc. 1996;46:927–39.

    CAS  Google Scholar 

  34. Oberdorster G, Ferin J, Lehnert BE. Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect. 1994;102:173–9.

    Google Scholar 

  35. Lai ACK, Thatcher TL, Nazaroff WW, Nazaroff WW. Inhalation transfer factors for air pollution health risk assessment. J Air Waste Manag Assoc. 2000;50:1688–99.

    CAS  Google Scholar 

  36. Wallace L, Howard-Reed C. Continuous monitoring of ultrafine, fine, and coarse particles in a residence for 18 months in 1999-2000. J Air Waste Manag Assoc. 2002;52:828–44.

    Google Scholar 

  37. Khalaf HNB, Mostafa MYA, Vasyanovich M, Zhukovsky M. Comparison of radioactive aerosol size distributions (activity, number, mass, and surface area). Appl Radiat Isot. 2019;145:95–100. Elsevier Ltd; Available from. https://doi.org/10.1016/j.apradiso.2018.12.022.

    Article  CAS  Google Scholar 

  38. Mohamed A, Abd El-hady M, Moustafa M, Yuness M. Deposition pattern of inhaled radon progeny size distribution in human lung. J Radiat Res Appl Sci. 2014;7:333–7 Available from: http://linkinghub.elsevier.com/retrieve/pii/S168785071400051X.

    Google Scholar 

  39. Mostafa MYA, Vasyanovich M, Zhukovsky M. A primary standard source of radon-222 based on the HPGe detector. Appl Radiat Isot. 2017;120:101–5.

    CAS  Google Scholar 

  40. Mostafa MYA, Khalaf HNB, Zhukovsky M. Infection of aerosol concentration on the radon decay products fractions. J Phys Confer Ser. 2019;1410:012080 Available from: https://iopscience.iop.org/article/10.1088/1742-6596/1410/1/012080.

    CAS  Google Scholar 

  41. Vasyanovich M, Mostafa MYA, Zhukovsky M. Ultrafine aerosol influence on the sampling by cascade impactor. Radiat Prot Dosim. 2017:1–4.

  42. Yuness M, Mohamed A, Abd El-Hady M, Moustafa M, Nazmy H. Indoor Activity of Short-Lived Radon Progeny as Critical Parameter in Dose Assessment. Solid State Phenomena. 2015;238:151–60 Available from: http://www.scientific.net/SSP.238.151.

  43. Yuness M, Mohamed A, AbdEl-hady M, Moustafa M, Nazmy H. Effect of indoor activity size distribution of222Rn progeny in-depth dose estimation. Appl Radiat Isot. 2015;97:34–9.

    CAS  Google Scholar 

  44. Yuness M, Mohamed A, Nazmy H, Moustafa M, Abd E-h M. Indoor activity size distribution of the short-lived radon progeny. Stoch Env Res Risk A. 2016;30:167–74.

    Google Scholar 

  45. Porstendorfer J, Mercer TT. Influence of electric charge and humidity upon the diffusion coefficient of radon decay products. Health Phys. 1979;37:191–9.

    CAS  Google Scholar 

  46. Porstendörfer J. Properties and behaviour of radon and thoron and their decay products in the air. J Aerosol Sci. 1994;25:219–63.

    Google Scholar 

  47. Zhukovsky M, Vasyanovich M, Onishchenko A, Vasilyev A. Anomalously high unattached fraction of 220Rn decay products in the atmosphere of monazite storage facility. Appl Radiat Isotopes. 2019;151:1–6 Elsevier Ltd.

    CAS  Google Scholar 

  48. ICRP 137. Occupational Intakes of Radionuclides: Part 3. Ann ICRP. 2017;46:7–486.

    Google Scholar 

  49. Khalaf HNB, Mostafa MYA, Zhukovsky M. A combined system for radioactive aerosol size distribution measurements of radon decay products. Radiat Phys Chem. 2019;165:108402 Elsevier Ltd; Available from: https://linkinghub.elsevier.com/retrieve/pii/S0969806X19305067.

    CAS  Google Scholar 

  50. Khalaf HNB, Mostafa MYA, Zhukovsky M. Effect of electronic cigarette (EC) aerosols on particle size distribution in indoor air and in a radon chamber. Nukleonika. 2019;64:31–8 Available from: https://content.sciendo.com/view/journals/nuka/64/1/article-p31.xml.

    CAS  Google Scholar 

  51. Khalaf HNB, Mostafa MYA, Zhukovsky M. Radioactive and non-radioactive aerosol permeability through two types of analytical filters. J Phys Confer Ser. 2019;1353:012080 Available from: https://iopscience.iop.org/article/10.1088/1742-6596/1353/1/012080.

    CAS  Google Scholar 

  52. Khalaf HNB, Mostafa MYA, Zhukovsky M. Radioactive aerosol permeability through Russian radiometric analytical (PF) filters. Journal of Radioanalytical and nuclear chemistry. 2019;319:1283–9. Springer International Publishing; Available from. https://doi.org/10.1007/s10967-019-06421-z.

    Article  CAS  Google Scholar 

  53. Khalaf HNB, Mostafa MYA, Zhukovsky M. Radiometric efficiency of analytical filters at different physical conditions. J Radioanalytical Nucl Chem. 2019;319(1):347–55.

    CAS  Google Scholar 

  54. MANUAL MPTR 407232.001. Diffusion Aerosol Spectrometer (DAS, Model 2702 M). 2016.

  55. Dubtsov S, Ovchinnikova T, Valiulin S, Chen X, Manninen HE, Aalto PP, et al. Laboratory verification of aerosol diffusion spectrometer and the application to ambient measurements of new particle formation. J Aerosol Sci. 2017;105:10–23. Elsevier; Available from. https://doi.org/10.1016/j.jaerosci.2016.10.015.

    Article  CAS  Google Scholar 

  56. Skubacz K, Wojtecki Ł, Urban P. Aerosol concentration and particle size distributions in underground excavations of a hard coal mine. Int J Occup Saf Ergon. 2017;23:318–27.

    Google Scholar 

  57. Guidance IS, Committee I. Guide for the practical application of the ICRP human respiratory tract model. Ann ICRP. 2002;32:29–32.

    Google Scholar 

  58. ICRP Publication 66. Human respiratory tract model for radiological protection. Ann ICRP. 1994;24:1–482.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mostafa Yuness Abdelfatah Mostafa or Hyam Nazmy Bader Khalaf.

Ethics declarations

Conflicts of interest/competing interests

(there is no Conflicts of interest/Competing interests)

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mostafa, M.Y.A., Khalaf, H.N.B. & Zhukovsky, M. Attachment rate characteristics of different wide used aerosol sources in indoor air. J Environ Health Sci Engineer 19, 867–879 (2021). https://doi.org/10.1007/s40201-021-00653-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-021-00653-6

Keywords

Navigation