Skip to main content
Log in

Highly-dispersed iron element decorated nickel foam synthesized by an acid-free and one-pot method for enzyme-free glucose sensor

无酸一步法合成高度分散铁元素修饰的泡沫镍无酶葡萄糖传感器

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The highly-dispersed iron element decorated Ni foam was prepared by simple immersion in a ferric nitrate solution at room temperature without using acid etching, and characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), EDAX spectrum (EDAX mapping) and Raman spectroscopy. The EDAX spectrum illustrated that iron element was highly-dispersed over the entire surface of nickel foam, and the Raman spectroscopy revealed that both Ni-O and Fe-O bonds were formed on the surface of the as-prepared electrode. Moreover, the iron element decorated Ni foam electrode can be used as non-enzymatic glucose sensor and it exhibits not only an ultra-wide linear concentration range of 1–18 mmol/L with an outstanding sensitivity of 1.0388 mA·mmol/(L·cm2), but also an excellent ability of stability and selectivity. Therefore, this work presents a simple yet effective approach to successfully modify Ni foam as non-enzymatic glucose sensor.

摘要

本文提出了一种简单而有效的方法将泡沫镍电极改性并用于无酶葡萄糖传感器。在室温、无酸 的条件下, 将泡沫镍浸入硝酸铁溶液中制备高分散的铁元素修饰的电极, 并通过X 射线粉末衍射 (XRD), 扫描电子显微镜(SEM), EDAX 光谱(EDAX)和拉曼光谱进行表征。EDAX 光谱表明, 铁元素 高度分散在泡沫镍的整个表面上; 拉曼光谱表明, Ni-O 和Fe-O 键均在制备好的电极表面上形成。 此外, 铁元素修饰的泡沫镍电极不仅具有1∼18 mmol/L 的超宽线性浓度范围和1.0388 mA·mmol/(L·cm2) 的灵敏度, 还具有很强的稳定性和选择性, 可以用作非酶葡萄糖传感器。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. LI Hong-bo, ZHANG Ling, MAO Yi-wu, WEN Cheng-wei, ZHAO Peng. A simple electrochemical route to access amorphous Co-Ni hydroxide for non-enzymatic glucose sensing [J]. Nanoscale Research Letters, 2019, 14(1): 1–12. DOI: https://doi.org/10.1186/s11671-019-2966-2.

    Article  Google Scholar 

  2. WEI Ming, QIAO Yan-xia, ZHAO Hai-tao, LIANG Jie, LI Ting-shuai, LUO Yong-lan, LU Si-yu, SHI Xi-feng, LU Wen-bo, SUN Xu-ping. Electrochemical non-enzymatic glucose sensors: Recent progress and perspectives [J]. Chemical Communications (Cambridge, England), 2020, 56(93): 14553–14569. DOI: https://doi.org/10.1039/d0cc05650b.

    Article  Google Scholar 

  3. LIU Yue-jia, ZHAO Wen-qiang, LI Xian-liang, LIU Jia-qiang, HAN Yi-de, WU Jun-biao, ZHANG Xia, XU Yan. Hierarchical α-Fe2O3 microcubes supported on Ni foam as no n-enzymatic glucose sensor [J]. Applied Surface Science, 2020, 512: 145710. DOI: https://doi.org/10.1016/j.apsusc.2020.145710.

    Article  Google Scholar 

  4. DHARA K, MAHAPATRA D R. Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials [J]. Microchimica Acta, 2017, 185(1): 1–32. DOI: https://doi.org/10.1007/s00604-017-2609-1.

    Google Scholar 

  5. HWANG D W, LEE S, SEO M, CHUNG T D. Recent advances in electrochemical non-enzymatic glucose sensors-A review [J]. Analytica Chimica Acta, 2018, 1033: 1–34. DOI: https://doi.org/10.1016/j.aca.2018.05.051.

    Article  Google Scholar 

  6. HSIEH Y S, WANG P W, LI C Y, HSIEH S J, WANG C Y, CHOU D W, WANG N F, HOUNG M P. Fabrication of non-enzymatic Ni-Au alloy nanowire glucose sensor [J]. Sensors and Materials, 2020, 32(5): 1843–1850. DOI: https://doi.org/10.18494/SAM.2020.2479.

    Article  Google Scholar 

  7. YADAV H M, LEE J J. One-pot synthesis of copper nanoparticles on glass: Applications for non-enzymatic glucose detection and catalytic reduction of 4-nitrophenol [J]. Journal of Solid State Electrochemistry, 2019, 23(2): 503–512. DOI: https://doi.org/10.1007/s10008-018-4137-2.

    Article  Google Scholar 

  8. GUO Qi, ZENG Wen, LI Yan-qiong. Highly sensitive non-enzymatic glucose sensor based on porous NiCo2O4 nanowires grown on nickel foam [J]. Materials Letters, 2019, 256: 126603. DOI: https://doi.org/10.1016/j.matlet.2019.126603.

    Article  Google Scholar 

  9. ZHONG Shu-lin, ZHUANG Jun-yang YANG Da-peng, TANG Dian-ping. Eggshell membrane-templated synthesis of 3D hierarchical porous Au networks for electrochemical nonenzymatic glucose sensor [J]. Biosensors and Bioelectronics, 2017, 96: 26–32. DOI: https://doi.org/10.1016/j.bios.2017.04.038.

    Article  Google Scholar 

  10. KHUN K, IBUPOTO Z H, LIU X, BENI V, WILLANDER M. The ethylene glycol template assisted hydrothermal synthesis of Co3O4 nanowires; structural characterization and their application as glucose non-enzymatic sensor [J]. Materials Science and Engineering B—Advanced Functional Solid-State Materials, 2015, 194: 94–100. DOI: https://doi.org/10.1016/j.mseb.2015.01.001.

    Google Scholar 

  11. LI Yao-yin, XIAO Qi, HUANG Su-ping. Highly active nickel-doped FeS2 nanoparticles trigger non-enzymatic glucose detection [J]. Materials Chemistry and Physics, 2017, 193: 311–315. DOI: https://doi.org/10.1016/j.matchemphys.2017.02.051.

    Article  Google Scholar 

  12. XIAO Qi, WANG Xin-xin, HUANG Su-ping. Facile synthesis of Ni(OH)2 nanowires on nickel foam via one step low-temperature hydrothermal route for non-enzymatic glucose sensor [J]. Materials Letters, 2017, 198: 19–22. DOI: https://doi.org/10.1016/j.matlet.2017.03.172.

    Article  Google Scholar 

  13. WANG Xin-xin, JIAN Hua-mei, XIAO Qi, HUANG Su-ping. In-situ fabrication of 3D flower-like NH4NiPO4 on Ni foam without nickel salts added for high sensitive nonenzymatic glucose detection [J]. Materials Research Bulletin, 2018, 100: 407–412. DOI: https://doi.org/10.1016/j.materresbull.2018.01.001.

    Article  Google Scholar 

  14. WANG Xin-xin, JIAN Hua-mei, XIAO Qi, HUANG Su-ping. Ammonium nickel phosphate on nickel foam with a Ni3+-rich surface for ultrasensitive nonenzymatic glucose sensors [J]. Applied Surface Science, 2018, 459: 40–47. DOI: https://doi.org/10.1016/j.apsusc.2018.07.202.

    Article  Google Scholar 

  15. DONG Min, HU Hong-li, DING Shu-jiang, WANG Chang-cheng, LI Long. A facile synthesis of CoMn2O4 nanosheets on reduced graphene oxide for non-enzymatic glucose sensing [J]. Nanotechnology, 2021, 32(5): 055501. DOI: https://doi.org/10.1088/1361-6528/abc112.

    Article  Google Scholar 

  16. DAT P V, VIET N X. Facile synthesis of novel flower like Cu2O nanowire on copper foil for a highly sensitive enzyme-free glucose sensor [J]. Materials Science & Engineering C—Materials for Biological Applications, 2019, 103: 109758. DOI: https://doi.org/10.1016/j.msec.2019.109758.

    Article  Google Scholar 

  17. ZHANG Chao, NI Hong-wei, CHEN Rong-sheng, ZHAN Wei-ting, ZHANG Bo-wei, LEI Rui, XIAO Tai-ping, ZHA Ya-xin. Enzyme-free glucose sensing based on Fe3O4 nanorod arrays [J]. Microchimica Acta, 2015, 182(9, 10): 1811–1818. DOI: https://doi.org/10.1007/s00604-015-1511-y.

    Article  Google Scholar 

  18. WANG Mei, SHI Ming-yu, MENG Er-chao, GONG Fei-long, LI Feng. Non-enzymatic glucose sensor based on three-dimensional hierarchical Co3O4 nanobooks [J]. Micro & Nano Letters, 2020, 15(3): 191–195. DOI: https://doi.org/10.1049/mnl.2019.0552.

    Article  Google Scholar 

  19. LI Zhan-hong, ZHAO Xue-ling, JIANG Xin-cheng, WU Yi-hua, CHEN Cheng, ZHU Zhi-gang, MARTY J L, CHEN Qing-song. An enhanced Nonenzymatic electrochemical glucose sensor based on copper-palladium Nanoparticles modified glassy carbon electrodes [J]. Electroanalysis, 2018, 30(8): 1803–1811. DOI: https://doi.org/10.1002/elan.201800017.

    Article  Google Scholar 

  20. MAO Wei-wei, HE Hai-ping, SUN Peng-cheng, YE Zhi-zhen, HUANG Jing-yun. Three-dimensional porous nickel frameworks anchored with cross-linked Ni(OH)2 Nanosheets as a highly sensitive nonenzymatic glucose sensor [J]. ACS Applied Materials & Interfaces, 2018, 10(17): 15088–15095. DOI: https://doi.org/10.1021/acsami.8b03433.

    Article  Google Scholar 

  21. JIA Hui-xian, SHANG Ning-zhao, FENG Yue, YE Hui-min, ZHAO Jia-ning, WANG Huan, WANG Chun, ZHANG Yu-fan. Facile preparation of Ni nanoparticle embedded on mesoporous carbon nanorods for non-enzymatic glucose detection [J]. Journal of Colloid and Interface Science, 2021, 583: 310–320. DOI: https://doi.org/10.1016/j.jcis.2020.09.051.

    Article  Google Scholar 

  22. MA Min, ZHU Wen-xin, ZHAO Dong-yang, MA Yi-yue, HU Na, SUO You-rui, WANG Jian-long. Surface engineering of nickel selenide nanosheets array on nickel foam: An integrated anode for glucose sensing [J]. Sensors and Actuators B — Chemical, 2019, 278: 110–116. DOI: https://doi.org/10.1016/j.snb.2018.09.075.

    Article  Google Scholar 

  23. DAI Hong-xiu, LIN Meng, WANG Nan, XU Fei, WANG Dong-lei, MA Hou-yi. Nickel-foam-supported Co3O4 nanosheets/PPy nanowire heterostructure for non-enzymatic glucose sensing [J]. Chemelectrochem, 2017, 4(5): 1135–1140. DOI: https://doi.org/10.1002/celc.201600919.

    Article  Google Scholar 

  24. WANG Li, XIE Ying-zhen, WEI Chang-ting, LU Xing-ping, LI Xia, SONG Yong-hai. Hierarchical NiO superstructures/foam Ni electrode derived from Ni metal-organic framework flakes on foam Ni for glucose sensing [J]. Electrochimica Acta, 2015, 174: 846–852. DOI: https://doi.org/10.1016/j.electacta.2015.06.086.

    Article  Google Scholar 

  25. DIAZ-MORALES O, FERRUS-SUSPEDRA D, KOPER M T M. The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation [J]. Chemical Science, 2016, 7(4): 2639–2645. DOI: https://doi.org/10.1039/c5sc04486c.

    Article  Google Scholar 

  26. LI H B, YU M H, WANG F X, LIU P, LIANG Y, XIAO J, WANG C X, TONG Y X, YANG G W. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials [J]. Nature Communications, 2013, 4: 1894. DOI: https://doi.org/10.1038/ncomms2932.

    Article  Google Scholar 

  27. LOUIE M W, BELL A T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen [J]. Journal of the American Chemical Society, 2013, 135(33): 12329–12337. DOI: https://doi.org/10.1021/ja405351s.

    Article  Google Scholar 

  28. SINGER N, PILLAI R G, JOHNSON A I D, HARRIS K D, JEMERE A B. Nanostructured nickel oxide electrodes for non-enzymatic electrochemical glucose sensing [J]. Microchimica Acta, 2020, 187(4): 1–10. DOI: https://doi.org/10.1007/s00604-020-4171-5.

    Article  Google Scholar 

  29. HE Ge-ge, TIAN Liang-liang, CAI Yan-hua, WU Shen-ping, SU Yong-yao, YAN Heng-qing, PU Wan-rong, ZHANG Jin-kun, LI Lu. Sensitive Nonenzymatic electrochemical glucose detection based on hollow porous NiO [J]. Nanoscale Research Letters, 2018, 13(1): 1–10. DOI: https://doi.org/10.1186/s11671-017-2406-0.

    Article  Google Scholar 

  30. ZHANG Yi, ZHAO Dong-yang, ZHU Wen-xin, ZHANG Wen-tao, YUE Zhi-hao, WANG Jing, WANG Rong, ZHANG Dao-hong, WANG Jian-long, ZHANG Guo-yun. Engineering multi-stage nickel oxide rod-on-sheet nanoarrays on Ni foam: A superior catalytic electrode for ultrahigh-performance electrochemical sensing of glucos [J]. Sensors and Actuators B—Chemical, 2018, 255: 416–423. DOI: https://doi.org/10.1016/j.snb.2017.08.078.

    Article  Google Scholar 

  31. JAFARIAN M, FOROUZANDEH F, DANAEE I, GOBAL F, MAHJANI M G. Electrocatalytic oxidation of glucose on Ni and NiCu alloy modified glassy carbon electrode [J]. Journal of Solid State Electrochemistry, 2009, 13(8): 1171–1179. DOI: https://doi.org/10.1007/s10008-008-0632-1.

    Article  Google Scholar 

  32. LIU Hong-yu, LU Xing-ping, XIAO De-jian, ZHOU Min-xian, XU Du-jian, SUN Lan-lan, SONG Yong-hai. Hierarchical Cu-Co-Ni nanostructures electrodeposited on carbon nanofiber modified glassy carbon electrode: application to glucose detection [J]. Analytical Methods, 2013, 5(22): 6360–6367. DOI: https://doi.org/10.1039/c3ay41170b.

    Article  Google Scholar 

  33. PADMANATHAN N, SHAO H, RAZEEB K M. Multifunctional nickel phosphate nano/microflakes 3D electrode for electrochemical energy storage, Nonenzymatic glucose. ACS Applied Materials & Interfaces, 2018, 10(10): 8599–8610. DOI: https://doi.org/10.1021/acsami.7b17187.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Xiao  (肖奇).

Additional information

Foundation item

Project(2019zzts684) supported by the Fundamental Research Funds for the Central Universities, China

Contributors

XIAO Qi provided the concept and reviewed the manuscript. ZHANG Yin-he analyzed the measured electrochemical data and wrote the original manuscript. HUANG Su-ping provided the concept and edited the draft of manuscript. All authors replied to reviewers’ comments and revised the final revision.

Conflict of interest

ZHANG Yin-he, HUANG Su-ping and XIAO Qi declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Yh., Huang, Sp. & Xiao, Q. Highly-dispersed iron element decorated nickel foam synthesized by an acid-free and one-pot method for enzyme-free glucose sensor. J. Cent. South Univ. 28, 669–678 (2021). https://doi.org/10.1007/s11771-021-4636-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4636-7

Key words

关键词

Navigation