Skip to main content
Log in

Characteristics and Sources of Black Carbon and Organic Carbon in Topsoil from Different Functional Zones of Beijing, China

  • DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Considering human activities are the most direct and important factors leading to the accumulation and loss of soil black carbon (BC), a detailed understanding of soil BC in different functional zones and reasonable soil management are the keys to determine whether soil is the carbon source or carbon sink. In this study, carbon concentrations and isotope compositions of black carbon (BC%, δ13CBC) and organic carbon (OC, δ13COC) were determined in topsoil from different functional zones (roadside grass verges, parks, residential areas, mines, arable lands, woodlands and wastelands) in urban and suburban of Beijing, China. The organic carbon (OC) content in soils of the urban area (averaging 1.67%) is higher than in suburban areas (averaging 1.05%). Black carbon is not evenly distributed across different functional zones, but is more concentrated and variable in urban areas (0.11–2.43%, averaging 0.73%) than in suburban areas (0.03–0.70%, averaging 0.18%). The ratios of BC% to OC% in suburban areas (0.04–0.40) are smaller than in urban areas (0.15–0.98). The δ13CBC of topsoil (–26.35…–20.85‰) reflects that coal combustion has a strong impact on soil BC accumulation in Beijing. The carbon isotope differences between OC and BC of the suburban and urban topsoils are positive (averaging +0.56‰) and negative (averaging –0.41‰), respectively. This suggests that urban areas are seriously influenced by human activities which lead to a large amount of fossil fuel combustion, but suburban areas have received a uniform deposition of atmospherically transported finer BC aerosols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. T. Agarwal and T. D. Bucheli, “Is black carbon a better predictor of polycyclic aromatic hydrocarbon distribution in soils than total organic carbon?” Environ. Pollut. 159, 64–70 (2011). https://doi.org/10.1016/j.envpol.2010.09.016

    Article  Google Scholar 

  2. M. M. Bender, “Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation,” Phytochemistry 10, 1239–1244 (1971). https://doi.org/10.1016/s0031-9422(00)84324-1

    Article  Google Scholar 

  3. L. Beyer, P. Kahle, H. Kretschmer, and Q. Wu, “Soil organic matter composition of man-impacted urban sites in North Germany,” J. Plant Nutr. Soil Sci. 164, 359–364 (2001).https://doi.org/10.1002/1522-2624(200108)164:4<359::aid-jpln359>3.0.co;2-m

  4. M. I. Bird and D. R. Grocke, “Determination of the abundance and carbon isotope composition of elemental carbon in sediments,” Geochim. Cosmochim. Acta 61 (16), 3413–3423 (1997). https://doi.org/10.1016/s0016-7037(97)00157-9

    Article  Google Scholar 

  5. T. D. Bucheli, F. Blum, A. Desaules, and Ö. Gustafsson, “Polycyclic aromatic hydrocarbons, black carbon, and molecular markers in soils of Switzerland,” Chemosphere 56, 1061–1076 (2004). https://doi.org/10.1016/j.chemosphere.2004.06.002

    Article  Google Scholar 

  6. H. Cachier, P. Buat-Menard, M. Foutugne, and J. Rancher, “Source terms and source strengths of the carbonaceous aerosol in the tropics,” J. Atmos. Chem. 3 (4), 469–489 (1985). https://doi.org/10.1007/bf00053872

    Article  Google Scholar 

  7. J. J. Cao, S. C. Lee, J. C. Chow, J. G. Watson, K. F. Ho, R. J. Zhang, Z. D. Jin, Z. X. Shen, G. C. Chen, Y. M. Kang, S. C. Zou, L. Z. Zhang, S. H. Qi, M. H. Dai, Y. Cheng, and K. Hu, “Spatial and seasonal distributions of carbonaceous aerosols over China,” J. Geophys. Res.: Atmos. 112, D22S11 (2007). https://doi.org/10.1029/2006JD008205

    Article  Google Scholar 

  8. M. R. Carter, J. O. Skjemstad, and R. J. MacEwan, “Comparison of structural stability, carbon fractions and chemistry of krasnozem soils from adjacent forest and pasture areas in south-western Victoria,” Austr. J. Soil Res. 40, 283–298 (2002). https://doi.org/10.1071/sr00106

    Article  Google Scholar 

  9. T. E. Cerling, J. Quade, Y. Wang, and J. Bowman, “Carbon isotopes in soils and palaeosols as ecology and palaeoecology indicators,” Nature 341, 138–139 (1989). https://doi.org/10.1038/341138a0

    Article  Google Scholar 

  10. P. J. Craul, Urban Soil in Landscape Design (Wiley, Chichester, 1992). https://doi.org/10.1016/0006-3207(93)90347-4

  11. C. I. Czimczik, C. M. Preston, M. W. I. Schmidt, R. A. Wernera, and E. D. Schulzea, “Effects of charring on mass, organic carbon, and stable carbon isotope composition of wood,” Org. Geochem. 33, 1207–1223 (2002). https://doi.org/10.1016/s0146-6380(02)00137-7

  12. C. I. Czimczik and C. A. Masiello, “Controls on black carbon storage in soils,” Global Biogeochem. Cycles 21, GB3005 (2007). https://doi.org/10.1029/2006GB002798

    Article  Google Scholar 

  13. O. Das, Y. Wang, and Y. P. Hsieh, “Chemical and carbon isotopic characteristics of ash and smoke derived from burning of C3 and C4 grasses,” Org. Geochem. 41 (3), 263–269 (2010). https://doi.org/10.1016/j.orggeochem.2009.11.001

    Article  Google Scholar 

  14. C. R. De Kimpe and J. L. Morel, “Urban soil management: a growing concern,” Soil Sci. 165, 31–40 (2000). https://doi.org/10.1097/00010694-200001000-00005

    Article  Google Scholar 

  15. T. H. Deluca, M. D. Mackenzie, and M. J. Gundale, “Biochar effects on soil nutrient transformation,” in Biochar for Environmental Management: Science, Technology and Implementation, Ed. by J. Lehmann and S. Joseph (Routledge, London, 2009), pp. 251–270. https://doi.org/10.4324/9780203762264-22

  16. M. B. Fernandes, J. O. Skjemstad, B. B. Johnson, J. D. Wells, and P. Brooks, “Characterization of carbonaceous combustion residues: I. Morphological, elemental and spectrocopic features,” Chemosphere 51, 785–795 (2003). https://doi.org/10.1016/s0045-6535(03)00098-5

  17. M. J. Gatari and J. Boman, “Black carbon and total carbon measurements at urban and rural sites in Kenya, East Africa,” Atmos. Environ. 37 (8), 1149–1154 (2003). https://doi.org/10.1016/s1352-2310(02)01001-4

    Article  Google Scholar 

  18. Y. Gelinas, K. M. Prentice, J. A. Baldock, and J. I. Hedges, “An improved thermal oxidation method for the quantification of soot/graphitic black carbon in sediments and soils,” Environ. Sci. Technol. 35, 3519–3525 (2001). https://doi.org/10.1021/es010504c

    Article  Google Scholar 

  19. B. Glaser, L. Haumaier, G. Guggenberger, and W. Zech, “The “Terra Preta” phenomenon: a model for sustainable agriculture in the humid tropics,” Naturwissenschaften 88 (1), 37–41 (2001). https://doi.org/10.1007/s001140000193

    Article  Google Scholar 

  20. E. D. Goldberg, Black Carbon in the Environment: Properties and Distribution (Wiley, New York, 1985).

    Google Scholar 

  21. Z. T. Gong, G. L. Zhang, and G. B. Luo, “Diversity of anthrosols in China,” Pedosphere 9 (3), 193–204 (1999).

    Google Scholar 

  22. Q. J. Guo, T. B. Chen, J. Yang, S. Harald, M. Lei, G. X. Zhu, Y. M. Li, X. Y. Zhou, and X. Y. Li, “Identification of using organic carbon isotopic composition of soil pollution process,” Environ. Sci. 32 (10), 3094–3098 (2011). https://doi.org/10.13227/j.hjkx.2011.10.037

    Article  Google Scholar 

  23. G. A. Hamilton and H. E. Hartnett, “Soot black carbon concentration and isotopic composition in soils from an arid urban ecosystem,” Org. Geochem. 59, 87–94 (2013). https://doi.org/10.1016/j.orggeochem.2013.04.003

    Article  Google Scholar 

  24. K. Hammes, R. J. Smernik, J. O. Skjemstad, A. Herzog, U. F. Vogt, and M. W. I. Schmidt, “Synthesis and characterization of laboratory-charred grass straw (Oryza sativa) and chestnut wood (Castanea sativa) as reference materials for black carbon quantification,” Org. Geochem. 37, 1629–1633 (2006). https://doi.org/10.1016/j.orggeochem.2006.07.003

    Article  Google Scholar 

  25. Z. C. Jiang, Y. Q. Lian, and X. Q. Qin, “Carbon cycle in the epikarst systems and its ecological effects in South China,” Environ. Earth Sci. 68, 151–158 (2013). https://doi.org/10.1007/s12665-012-1724-x

    Article  Google Scholar 

  26. E. S. Krull, J. O. Skjemstad, D. Graetz, K. Grice, W. Dunning, G. Cook, and J. F. Parr, “13C-depleted charcoal from C4 grasses and the role of occluded carbon in phytoliths,” Org. Geochem. 34, 1337–1352 (2003). https://doi.org/10.1016/s0140-6701(04)90028-8

  27. S. W. Leavitt, D. J. Donahue, and A. Long, “Charcoal production from wood and cellulose: implications to radiocarbon dates and accelerator target production,” Radiocarbon 24 (1), 27–35 (1982). https://doi.org/10.1017/s0033822200004860

    Article  Google Scholar 

  28. B. Lim, and H. Cashier, “Determination of black carbon by chemical oxidation and thermal treatment in recent marine and lake sediments and Cretaceous-Tertiary clays,” Chem. Geol. 131, 143–154 (1996). https://doi.org/10.1016/0009-2541(96)00031-9

    Article  Google Scholar 

  29. G. Liu, Q. F. Yao, and H. Yang, “Stable isotopic compositions of organic carbon and elemental carbon in automobile exhaust smoke,” J. Environ. Sci. Health 25 (9), 822–823 (2008) (in Chinese). https://doi.org/10.16241/j.cnki.1001-5914.2008.09.006

  30. L. Liu, X. Zhou, and J. Y. Ge, “The application of the carbon isotope of element carbon in the research of paleoenvironment,” Geol. Rev. 58, 526–532 (2012). https://doi.org/10.3969/j.issn.0371-5736.2012.03.013

    Article  Google Scholar 

  31. L. Liu, Y. Song, L. L. Cui, and Z. G. Hao, “Stable carbon isotopic composition of black carbon in surface soil as a proxy for reconstructing vegetation on the Chinese Loess Plateau,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 388, 109–114 (2013). https://doi.org/10.1016/j.palaeo.2013.08.012

    Article  Google Scholar 

  32. L. Liu, Y. S. Qiao, and Z. G. Hao, “Black carbon concentration and isotopic composition of surface sand from deserts and dune fields in Northern China,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 445, 1–7 (2016). https://doi.org/10.1016/j.palaeo.2015.12.026

  33. L. Liu, M. Huang, and Z. Q. Liu, “Stable carbon isotopic composition of black carbon in surface soil as a proxy for reconstructing vegetation on the northern slope of the Qinling Mountains,” Acta Geol. Sin. 90 (1), 222–229 (2016b). https://doi.org/10.1111/1755-6724.12653

    Article  Google Scholar 

  34. L. Liu, S. B. Yang, Y. S. Qiao, X. Zhou, and T. Zhan, “A review of soil black carbon characteristics and sources in different natural environments and urban functional areas,” Acta Geol. Sin. 91 (3), 658–667 (2017). https://doi.org/10.3969/j.issn.0001-5717.2017.03.012

    Article  Google Scholar 

  35. S. D. Liu, X. H. Xia, Y. W. Zhai, R. Wang, T. Liu, and S. W. Zhang, “Black carbon (BC) in urban and surrounding rural soils of Beijing, China: spatial distribution and relationship with polycyclic aromatic hydrocarbons (PAHs),” Chemosphere 82, 223–228 (2011). https://doi.org/10.1016/j.chemosphere.2010.10.017

    Article  Google Scholar 

  36. D. Lopez-Veneroni, “The stable carbon isotope composition of PM2.5 and PM10 in Mexico City Metropolitan Area air,” Atmos. Environ. 43, 4491–4502 (2009). https://doi.org/10.1016/j.atmosenv.2009.06.036

    Article  Google Scholar 

  37. K. Lorenz, C. M. Preston, and E. Kandeler, “Soil organic matter in urban soils: estimation of elemental carbon by thermal oxidation and characterization of organic matter by solid-state C-13 nuclear magnetic resonance (NMR) spectroscopy,” Geoderma 130, 312–323 (2006). https://doi.org/10.1016/j.geoderma.2005.02.004

    Article  Google Scholar 

  38. L. Ma, L. Z. Yang, E. Ci, Y. Wang, S. X. Yin, and M. X. Shen, “Humus composition and stable carbon isotope natural abundance in paddy soil under long term fertilization,” Chin. J. Appl. Environ. Biol. 19 (9), 1951–1958 (2008).

    Google Scholar 

  39. O. L. Mayol-Bracero, R. Gabriel, M. O. Andreae, T. W. Kirchstetter, T. Novakov, J. Ogren, P. Sheridan, and D. G. Streets, “Carbonaceous aerosols over the Indian ocean during the Indian Ocean experiment (INDOE-X): chemical characterization, optical properties, and probable sources,” J. Geophys. Res.: Atmos. 107, 8030 (2002). https://doi.org/10.1029/2000jd000039

    Article  Google Scholar 

  40. C. A. Masiello, “New directions in black carbon organic geochemistry,” Mar. Chem. 92, 201–213 (2004). https://doi.org/10.1016/j.marchem.2004.06.043

    Article  Google Scholar 

  41. J. J. Nam, G. O. Thomas, F. M. Jaward, E. Steinnes, Ö. Gustafsson, and K. C. Jones, “PAHs in background soils from Western Europe: influence of atmospheric deposition and soil organic matter,” Chemosphere 70, 1596–1602 (2008). https://doi.org/10.1016/j.chemosphere.2007.08.010

  42. R. F. Sage and R. K. Monson, C 4 Plant Biology (Academic, London, 1999). https://doi.org/10.1016/b978-0-12-614440-6.x5000-9

  43. M. W. I. Schmidt and A. G. Noack, “Black carbon in soils and sediments: analysis, distribution, implications, and current challenges,” Global Biogeochem. Cycles 14, 777–793 (2000). https://doi.org/10.1029/1999gb001208

    Article  Google Scholar 

  44. V. C. Turekian, S. Macko, D. Ballentine, R. J. Swap, and M. Garstang, “Causes of bulk carbon and nitrogen isotopic fractionations in the products of vegetation burns: laboratory studies,” Chem. Geol. 152, 181–192 (1998). https://doi.org/10.1016/s0009-2541(98)00105-3

  45. C. S. M. Turney, D. Wheeler, and A. R. Chivas, “Carbon isotope fractionation in wood during carbonization,” Geochim. Cosmochim. Acta 70, 960–964 (2006).https://doi.org/10.1016/j.gca.2005.10.031

  46. G. A. Wang, PhD Thesis (Institute of Geology and Geophysics, Chinese Academy of Science, Beijing, 2001).

  47. G. Wang, X. Feng, J. Han, L. Zhou, W. Tan, and F. Su, “Paleovegetation reconstruction using δ13C of soil organic matter,” Biogeosciences 5, 1325–1337 (2008).https://doi.org/10.5194/bg-5-1325-2008

  48. X. Wang, J. Y. Yang, Y. C. Yu, W. J. Hou, Y. Hou, J. Yu, and R. H. Wang, “Concentration and sources of black carbon in urban forest soils in different functional areas of Nanjing, China,” Acta Ecol. Sin. 36 (3), 837–843 (2016). https://doi.org/10.5846/stxb201404200775

    Article  Google Scholar 

  49. X. S. Wang, “Black carbon in urban topsoils of Xuzhou (China): environmental implication and magnetic proxy,” Environ. Monit. Assess. 163, 41–47 (2010). https://doi.org/10.1007/s10661-009-0814-z

    Article  Google Scholar 

  50. D. Widory, “Combustibles, fuels and their combustion products: a view through carbon isotopes,” Combust. Theory Model. 10 (5), 831–841 (2006). https://doi.org/10.1080/13647830600720264

    Article  Google Scholar 

  51. Z. L. Xie, J. He, C. W. Lu, R. Q. Zhang, B. Zhou, H. F. Mao, W. J. Song, W. C. Zhao, D. K. Hou, J. H. Wang, and Y. F. Li, “Organic carbon fractions and estimation of organic carbon storage in the lake sediments in Inner Mongolia Plateau, China,” Environ. Earth Sci. 73, 2169–2178 (2015). https://doi.org/10.1007/s12665-014-3568-z

    Article  Google Scholar 

  52. G. L. Zhang, Y. He, and Z. T. Gong, “Characteristics of organic carbon distribution in anthropogenic soils and its implication on carbon sequestration,” Quarter. Sci. 24 (2), 149–159 (2004). https://doi.org/10.3321/j.issn:1001-7410.2004.02.004

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the National Natural Science Foundation of China (41877431) and the Basic Scientific Research Program of Chinese Academy of Geological Sciences (YWF201609). The authors gratefully acknowledge engineer Cui Linlin for her help in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Liu.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Yang, S. Characteristics and Sources of Black Carbon and Organic Carbon in Topsoil from Different Functional Zones of Beijing, China. Eurasian Soil Sc. 54, 927–942 (2021). https://doi.org/10.1134/S1064229321060090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321060090

Keywords:

Navigation