Skip to main content
Log in

The Copper Content in Soil of Olive Orchards from Dalmatia, Croatia

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The goals of this study were to determine the concentrations of Cu in the soil of olive orchards grown on the Terra rossa and to examine how close the Cu concentration is to contamination limits defined by different soil quality standards. A total of 40 composite topsoil (0–25 cm) samples were collected in the traditional dry farming and highly fragmented olive orchards that covered an area of 3200 ha and located in the Middle Dalmatia, Croatia. The aqua regia Cu concentration was determined by ICP-OES; and basic soil properties (pH, carbonates, SOC, and particle size distribution), by standard analytical procedures. The mean value of Cu concentration of 68.4 mg kg–1 was more than twice as high as the mean values of the naturally occurring concentration of Cu in the Terra rossa soil. High mean value and a wide range of copper in the soil (33.8–250 mg kg–1) are due to the long-lasting application of Cu-based fungicides related to the fact that the olive growing area and vines overlap. The Cu contamination risk assessment in olive orchards was calculated by comparing the detected concentrations of Cu with the soil quality standards prescribed by the Finnish Decree and Croatian Ordinance and using the threshold value of the regional background data on Cu concentration in Terra rossa soil. According to the Finnish Decree, in 7.5% of cases, Cu concentration in soils exceeded the threshold limit of 100 mg kg–1, which indicates the need for further assessment of the potential contamination of the area. In 7.5% of cases, Cu exceeded the critical limit of 150 mg kg–1 that presents an ecological risk. By applying the Croatian Ordinance, in 10% of cases, the concentration of Cu exceeded the maximum admissible concentration of 120 mg kg–1, so that the soil can be considered contaminated and unsuitable for agriculture. The regional threshold value for the background concentration of Cu in the Terra rossa soil amounted to 55 mg kg–1, and its use in 47.5% of cases indicates the need for further assessment of the potential contamination in the area. The presented results showed significant differences between national soil guideline values (SGVs) and the regional threshold value for Cu and confirmed the fact that there is no general and accurate reference method for soil contamination assessment that can be applied at all sites. The use of threshold values derived for a particular soil type that dominates in a given area would be more reliable than the national soil quality standards. Research has pointed to the problem of soil contamination with Cu under olive orchards and has highlighted the need for studying the given issue in the areas, where olives share space with vines, and in particular, where mixed or consociate cropping system is present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. Albanese, M. Sadeghi, A. Lima, D. Cicchella, E. Dinelli, P. Valera, M. Falconi, A. Demetriades, and B. De Vivo, “GEMAS: cobalt, Cr, Cu and Ni distribution in agricultural and grazing land soil of Europe,” J. Geochem. Explor. 154, 81–93 (2015). https://doi.org/10.1016/j.gexplo.2015.01.004

    Article  Google Scholar 

  2. V. G. Ambrosini, D. J. Rosa, J. P. Corredor, M. Borghezan, G. W. Melo, J. J. Comin, D. G. Simao, and G. Brunetto, “Reduction of copper phytotoxicity by liming: a study of the root anatomy of young vines (Vitis labrusca L.),” Plant Physiol. Biochem. 96, 270–280 (2015). https://doi.org/10.1016/j.plaphy.2015.08.012

    Article  Google Scholar 

  3. P. Avramidis, P. Barouchas, T. Dünwald, I. Unkel, and D. Panagiotaras, “The influence of olive orchards copper-based fungicide use, in soils and sediments—The case of Aetoliko (Etoliko) Lagoon, Western Greece,” Geoscience 9, 267 (2019). https://doi.org/10.3390/geosciences9060267

    Article  Google Scholar 

  4. C. Ballabio, P. Panagos, E. Lugato, J.-H. Huang, A. Orgiazzi, A. Jones, O. Fernandez-Ugalde, P. Borelli, and L. Montanarella, “Copper distribution in European topsoils: an assessment based on LUCAS soil survey,” Sci. Total Environ. 636, 282–298 (2018). https://doi.org/10.1016/j.scitotenv.2018.04.268

    Article  Google Scholar 

  5. C. Bini, G. Sartori, M. Whasha, and S. Fontana, “Background levels of trace elements and soil geochemistry at regional level in NE Italy,” J. Geochem. Explor. 109 (1–3), 125–133 (2011). https://doi.org/10.1016/j.gexplo.2010.07.008

    Article  Google Scholar 

  6. A. W. Bowman and A. Azzalini, Applied Smoothing Techniques for Data Analysis (Oxford University Press, Oxford, 1997).

    Google Scholar 

  7. H. B. Bradl, “Adsorption of heavy metal ions on soils and soil constituents,” J. Coll. Int. Sci. 277, 1–18 (2004). https://doi.org/10.1016/j.jcis.2004.04.005

    Article  Google Scholar 

  8. C. Carlon, M. D’Alessandro, and F. Swartjes, Derivation Methods of Soil Screening Values in Europe: A Review and Evaluation of National Procedures towards Harmonization (Office for Official Publications of the European Communities, Luxembourg, 2007).

    Google Scholar 

  9. Agricultural census 2003, Republic of Croatia, Central Bureau of Statistics (CBS). https://www.dzs.hr/Hrv/ censuses/Agriculture2003/census_agr_tabl.htm.

  10. B. Cerqueira, E. F. Covelo, L. Andrade, and F. A. Vega, “The influence of soil properties on the individual and competitive sorption and desorption of Cu and Cd,” Geoderma 162 (1–2), 20–26 (2011). https://doi.org/10.1016/j.geoderma.2010.08.013

    Article  Google Scholar 

  11. A. Čolak and J. Martinović, Basic Soil Map of Croatia 1 : 50 000 Section Šibenik 3 (Projektni Savjet za Izradu Pedološke Karte SRH, Split, 1974)

  12. A. Čolak and J. Martinović, Basic Soil Map of Croatia 1 : 50 000 Section Šibenik 4 (Projektni Savjet za Izradu Pedološke Karte SRH, Split, 1974)

  13. Croatian Environment Agency, CORINE Land Cover (Ministry of Environment and Nature Protection of Republic of Croatia, Zagreb, 2018). http://corine.haop.hr.

  14. “Decreto Legislativo (DL) 152/06: Norme in materia ambientale,” Gazz. Uffic. Rep. Ital., No. 88, (2006)

  15. CLRR 7: Assessment of Risks to Human Health from Land Contamination: An Overview of the Development of Soil Guideline Values and Related Research (Department of Food and Rural Affairs, Environment Agency, Bristol, 2002)

  16. CLRR 10: Contaminated Land Exposure Assessment (CLEA) Model: Technical Basis and Algorithms (Department of Food and Rural Affairs, Environment Agency, Bristol, 2002)

  17. R. Delgado, J. M. Martín-García, C. Oyonarte, and D. Delagado, “Genesis of the terrae rossae of the Sierra Gádor (Andalusia, Spain),” Eur. J. Soil Sci. 54, 1–16 (2003). https://doi.org/10.1046/j.1365-2389.2003.00510.x

    Article  Google Scholar 

  18. A. Deluisa, P. Giandon, M. Aichner, P. Bortolami, L. Bruna, A. Lupetti, et al., “Copper pollution in Italian vineyard soils,” Commun. Soil Sci. Plant Anal. 27, 1537–1548 (1996).

    Article  Google Scholar 

  19. M. ’Díaz-Raviña, R. Calvo de Anta, and E. Bååth, “Tolerance (PICT) of the bacterial communities to copper in vineyard soils from Spain,” J. Environ. Qual. 36, 1760–1764 (2007). https://doi.org/10.2134/jeq2006.0476

  20. “EC (European Commission) Regulation no. 473/2002 Amending Annexes I, II and VI to Council Regulation (EEC) no. 2092/91 on organic production of agricultural products and indications referring thereto on agricultural products and foodstuffs, and laying down detailed rules as regards the transmission of information on the use of copper compounds,” Off. J. Eur. Comm. 75, 21–24 (2002).

  21. Eurostat, LUCAS: Land use and land cover survey, 2015. https://ec.europa.eu/eurostat/statistics-explained/ index.php/LUCAS_-_Land_use_and_land_cover_survey last accessed: October 9, 2015)

  22. ISO 10693:1995: Soil Quality—Determination of Carbonate Content—Volumetric Method (International Organization for Standardization, Geneva, 1995).

  23. ISO 11466:1995: Soil Quality—Extraction of Trace Elements Soluble in Aqua Regia (International Organization for Standardization, Geneva, 1995).

  24. ISO 10390:2005: Soil Quality—Determination of pH (International Organization for Standardization, Geneva, 2005).

  25. ISO 11464:2006: Soil Quality—Pretreatment of Samples for Physico-Chemical Analysis (International Organization for Standardization, Geneva, 2006).

  26. ISO 11277:2009: Soil Quality—Determination of Particle Size Distribution in Mineral Soil Material—Method by Sieving and Sedimentation (International Organization for Standardization, Geneva, 2009).

  27. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2015).

    Google Scholar 

  28. JDPZ, Priručnik za Ispitivanje Zemljišta, Book 1: Kemijske Metode Ispitivanja Zemljišta (Belgrade, 1966).

  29. A. Kabata-Pendias, Trace Elements in Soils and Plants, 4th ed. (CRC Press, Boca Raton, FL, 2011).

    Google Scholar 

  30. W. Köppen, “Klassifikation der Klimate nach Temperatur Niederschlag und Jahreslauf,” Petermanns Geogr. Mitt. 64, 193–203 (1918).

    Google Scholar 

  31. M. Komarek, E. Cadkova, V. Chrastny, F. Bordas, and J. C. Bollinger, “Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects“, Environ. Int. 36, 138–151 (2010). https://doi.org/10.1016/j.envint.2009.10.005

    Article  Google Scholar 

  32. P. Maleš, J. Bubić, and I. Pezo, Regionalization of Viticulture in Croatia (Institute for Adriatic Cultures and Karst Reclamation, Split, 1976) [in Croatian].

    Google Scholar 

  33. S. Marinčić, N. Magaš, and I. Borović, Osnovna Geološka Karta SFRJ 1 : 100 000, List Split K 33-21 (Savezni Geološki Zavod, Belgrade, 1971).

    Google Scholar 

  34. S. Marinčić, N. Magaš, and I. Borović, Osnovna Geološka Karta SFRJ 1 : 100 000, List Primošten 33-20 (Savezni Geološki Zavod, Belgrade, 1971).

    Google Scholar 

  35. R. Marzaioli, R. D Ascoli, R. A. De Pascale, and F. A. Rutigliano, “Soil quality in A Mediterranean area of Southern Italy as related to different land use types,” Appl. Soil Ecol. 44, 205–212 (2010). https://doi.org/10.1016/j.apsoil.2009.12.007

    Article  Google Scholar 

  36. B. Miloš, “Osnovna pedološka karta Hrvatske, list Vis 2 i Vis 4,” in Projektni Savjet za Izradu Pedološke Karte (Zagreb, 1986).

  37. B. Miloš and A. Bensa, “Cd, Cu, Pb and Zn in Terra Rossa soil of Dalmatia,” in Proceedings of the 49th Croatian and 9th International Symposium on Agriculture (Dubrovnik, 2014), pp. 14–15.

  38. B. Miloš, The Background Concentrations of Heavy Metals (Cd, Cu, Zn and Pb) in Terra Rossa Soil from Dalmatia (Institut za Jadranske Kulture i Melioraciju Mrša, Split, 2014).

    Google Scholar 

  39. B. Miloš and A. Bensa, “Prediction of soil organic carbon using VIS-NIR spectroscopy: application to red Mediterranean soils from Croatia,” Eurasian J. Soil Sci. 6 (4) 365–373 (2017). https://doi.org/10.18393/ejss.319208

    Article  Google Scholar 

  40. B. Miloš and A. Bensa, “Background variation and threshold values for cadmium concentration in Terra Rossa soil from Dalmatia, Croatia,” Eurasian Soil Sci. 52, 1622–1631 (2019). https://doi.org/10.1134/S1064229319120111

    Article  Google Scholar 

  41. Finland Government Decree on the Assessment of Soil Contamination and Remediation Needs No. 214/2007 (Ministry of the Environment of the Finland, Helsinki, 2007)

  42. “Ordinance on geographical areas of grape growing in the Republic of Croatia,” Off. Gaz., No. 74/12, (2012)

  43. “Regulation on protection of agricultural land in the Republic of Croatia,” Off. Gaz., No. 71/19, (2019).

  44. OSQS, “Ordinance of the Ministry of Environment of 9 September 2002 on soil quality standards of soil,” J. Laws Rep. Pol. 165, 1359 (2002).

    Google Scholar 

  45. P. Panagos, C. Ballabio, E. Lugato, A. Jones, P. Borrelli, S. Scarpa, A. Orgiazzi, and L. Montanarella, “Potential sources of anthropogenic copper Inputs to European agricultural soils,” Sustainability 10, 2380 (2018). https://doi.org/10.3390/su10072380

    Article  Google Scholar 

  46. C. Parat, R. Chaussod, J. Leveque, S. Dousset, and F. Andreux, “The relationship between copper accumulated in vineyard calcareous and soil organic matter and iron,” Eur. J. Soil Sci. 53, 663–669 (2002). https://doi.org/10.1046/j.1365-2389.2002.00478.x

    Article  Google Scholar 

  47. Z. Peh, S. Miko, and D. Bukovec, “The geochemical background in Istrian soils”, Nat. Croat. 12 (4), 195–232 (2003).

    Google Scholar 

  48. U. Pietrzak and D. C. McPhail, “Copper accumulation, distribution and fractionation in vineyard soil of Victoria, Australia,” Geoderma 122 (2–4) 151–166 (2004). https://doi.org/10.1016/j.geoderma.2004.01.005

    Article  Google Scholar 

  49. M. R. Provenzano, H. El Bilali, V. Simeone, D. Mondelli, and N. Baser, “Monitoring of soil copper concentrations in different organic farms over a three-year period in Apulia, South-Eastern Italy,” Ital. J. Agron. 1, 41–51 (2009). https://doi.org/10.4081/ija.2009.1.41

    Article  Google Scholar 

  50. C. Reimann and R. Garrett, “Geochemical background-concept and reality,” Sci. Total Environ. 350, 12–27 (2005). https://doi.org/10.1016/j.scitotenv.2005.01.047

    Article  Google Scholar 

  51. C. Reimann, K. Fabian, M. Birke, P. Filzmoser, A. Demetriades, P. Négrel, K. Oorts, J. Matschullat, P. de Caritat, et al., “GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil,” Appl. Geochem. 88, 302–318 (2018). https://doi.org/10.1016/j.apgeochem.2017.01.021

    Article  Google Scholar 

  52. C. Reimann, K. Fabian, B. Flem, and P. Englmaier, “The large-scale distribution of Cu and Zn in sub- and topsoil: separating topsoil bioaccumulation and natural matrix effects from diffuse and regional contamination“, Sci. Total Environ. 655, 730–740 (2019). https://doi.org/10.1016/j.scitotenv.2018.11.248

    Article  Google Scholar 

  53. Soil Survey Staff, Keys to Soil Taxonomy, 10th ed. (USDA Natural Resources Conservation Service, Washington, DC, 2006).

    Google Scholar 

  54. Soil Science Division Staff, Soil Survey Manual: USDA Handbook No. 18, Ed. by C. Ditzler, K. Scheffe, and H. C. Monger (Government Printing Office, Washington, DC, 2017)

    Google Scholar 

  55. A. Škorić, G. Filipovski, and M. Ćirić, Soil Classification of Yugoslavia (Akademija Nauka i Umjetnosti Bosne i Hercegovine, Sarajevo, 1985) [in Croatian].

    Google Scholar 

  56. A. Škorić, M. Adam, F. Bašić, M. Bogunović, D. Cestar, J. Martinović, B. Mayer, B. Miloš and Ž. Vidaček, Pedosphere of Istria: Projektni Savjet Pedološke Karte Hrvatske (Zagreb, 1987).

  57. S. Temur, H. Orhan, and A. Deli, “Geochemistry of the limestone of Mortas Formation and related terra rossa, Seydisehir, Konya, Turkey,” Geochem. Int. 47 (1), 67–93 (2009). https://doi.org/10.1134/S0016702909010054

    Article  Google Scholar 

  58. J. W. Tukey, Exploratory Data Analysis (Addison-Wesley, Reading, MA, 1977). ISBN 978-0-201-07616-5. OCLC 3058187

  59. E. Vavoulidou, E. J. Avramides, P. Papadopoulos, A. Dimirkou, A. Charoulis, and S. Konstantinidou-Doltsinis, “Copper content in agricultural soils related to cropping. systems in different regions of Greece,“ Commun. Soil Sci. Plant Anal. 36, 759–773 (2005). https://doi.org/10.1081/CSS-200043367

    Article  Google Scholar 

  60. S. Vingiani, E. Di Iorio, C. Colombo, and F. Terribile, “Integrated study of red Mediterranean soils from Southern Italy,” Catena 168, 129–140 (2018). https://doi.org/10.1016/j.catena.2018.01.002

    Article  Google Scholar 

  61. E. Vitanović, “Use of Cu fungicides in vineyards and olive groves,” in Fungicides for Plant and Animal Diseases, Ed. by D. Dhanasekaran, N. Thajuddin, and A. Panneerselvam (In Tech, London, 2012), pp. 281–298.

  62. VROM, Ministerial Circular on Target and Intervention Values for Soil Remediation No. DBO/1999226863 (Ministry of Housing, Spatial Planning and the Environment, Bilthoven, 2000).

  63. K. Zaninović, M. Gajić-Čapka, M. Perčec Tadić, M. Vučetić, J. Milković, A. Bajić, K. Cindrić, L. Cvitan, Z. Katušin, D. Kaučić, T. Likso, E. Lončar, Ž. Lončar, D. Mihajlović, K. Pandžić, et al., Klimatski Atlas Hrvatske: 1961–1990, 1971–2000 (Državni Hidrometeorološki Zavod, Zagreb, 2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bensa.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miloš, B., Bensa, A. The Copper Content in Soil of Olive Orchards from Dalmatia, Croatia. Eurasian Soil Sc. 54, 865–874 (2021). https://doi.org/10.1134/S1064229321060119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321060119

Keywords:

Navigation