Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Site-directed Fragnomics and MD Simulations Approaches to Identify Interleukin-2 Inhibitors

Author(s): Ruqaiya Khalil, Saman Usmani, Mohammad Nur-e-Alam, Sarfaraz Ahmed and Zaheer Ul-Haq*

Volume 17, Issue 4, 2021

Published on: 13 November, 2020

Page: [407 - 417] Pages: 11

DOI: 10.2174/1573406416999201113104501

Price: $65

Abstract

Introduction: The aberrant expression of Interleukin-2 (IL2), the chief regulator of immunity, is associated with many auto-immune diseases. At present, there is no FDA approved drug targeting IL2, which puts forth the need for small molecular inhibitors to block IL2 and its receptor interaction.

Methodology: Herein, we used the contemporary fragnomics approach to design novel drug-like inhibitors targeting IL2. Briefly, the RECAP (Retrosynthetic Combinatorial Analysis Procedure) package implemented in MOE (Molecular Operating Environment check) software suite was utilised to obtain fragments fulfilling the ‘rule of three’ criteria for fragments. The binding site of IL2 was divided into three smaller grooves, and the fragments were docked to screen their affinity for a particular site, followed by site-directed RECAP synthesis.

Results: A focused library of 10,000 compounds was prepared by re-combining the fragments according to their affinity for a particular site as observed in docking. Docking and subsequent analysis of newly synthesised compounds identified 40 privileged leads, presenting hydrogen bonding with basic residues of the pocket. A QSAR model was implied to predict the IC50 of the compounds and to analyse the electrostatic and hydrophobic contour maps. The resulting hits were found to be modest IL2 inhibitors with predicted inhibitory activity in the range of 5.17-4.40 nM. Further Dynamic simulation studies were carried out to determine the stability of the inhibitor-IL2 complex.

Conclusion: Our findings underline the potential of the novel compounds as valuable pharmacological agents in diseases characterised by IL2 overexpression.

Keywords: Proinflammatory cytokine, IL2, protein kinase, RECAP, T-cells, interleukin-2 inhibitors.

Graphical Abstract
[1]
Huang, D.; Caflisch, A. Library screening by fragment-based docking. J. Mol. Recognit., 2010, 23(2), 183-193.
[PMID: 19718684]
[2]
Zech, S.G.; Kohlmann, A.; Zhou, T.; Li, F.; Squillace, R.M.; Parillon, L.E.; Greenfield, M.T.; Miller, D.P.; Qi, J.; Thomas, R.M.; Wang, Y.; Xu, Y.; Miret, J.J.; Shakespeare, W.C.; Zhu, X.; Dalgarno, D.C. Novel small molecule inhibitors of choline kinase identified by fragment-based drug discovery. J. Med. Chem., 2016, 59(2), 671-686.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01552] [PMID: 26700752]
[3]
Spiliotopoulos, D.; Caflisch, A. Fragment-based in silico screening of bromodomain ligands. Drug Discov. Today. Technol., 2016, 19, 81-90.
[http://dx.doi.org/10.1016/j.ddtec.2016.06.003] [PMID: 27769362]
[4]
Velvadapu, V.; Farmer, B.T.; Reitz, A.B. Fragment-Based Drug Discovery. In: The Practice of Medicinal Chemistry; 4th ed; Wermuth, C.G.; Aldous, D.; Raboisson, P.; Rognan, D., Eds.; Academic Press: San Diego, 2015; pp. 161-180.
[http://dx.doi.org/10.1016/B978-0-12-417205-0.00007-9]
[5]
Erlanson, D.A.; Davis, B.J.; Jahnke, W. Fragment-based drug discovery: advancing fragments in the absence of crystal structures. Cell Chem. Biol., 2019, 26(1), 9-15.
[http://dx.doi.org/10.1016/j.chembiol.2018.10.001] [PMID: 30482678]
[6]
Simpson, E. Special regulatory t-cell review: regulation of immune responses--examining the role of t cells. Immunology, 2008, 123(1), 13-16.
[http://dx.doi.org/10.1111/j.1365-2567.2007.02775.x] [PMID: 18154613]
[7]
Basten, A.; Fazekas De St Groth, B. Special regulatory t-cell review: t-cell dependent suppression revisited. Immunology, 2008, 123(1), 33-39.
[http://dx.doi.org/10.1111/j.1365-2567.2007.02772.x] [PMID: 18154617]
[8]
Kaufmann, S.H.E. Immunology’s Coming Of Age. Front. Immunol., 2019, 10, 684.
[http://dx.doi.org/10.3389/fimmu.2019.00684] [PMID: 31001278]
[9]
Cooper, M.D.; Miller, J.F.A.P. Discovery of 2 distinctive lineages of lymphocytes, t cells and b cells, as the basis of the adaptive immune system and immunologic function: 2019 albert lasker basic medical research award. In: JAMA; , 2019. Online ahead of print
[http://dx.doi.org/10.1001/jama.2019.13815] [PMID: 31503279]
[10]
Masopust, D.; Vezys, V.; Wherry, E.J.; Ahmed, R. A brief history of CD8 T cells. Eur. J. Immunol., 2007, 37(Suppl. 1), S103-S110.
[http://dx.doi.org/10.1002/eji.200737584] [PMID: 17972353]
[11]
Van Parijs, L.; Biuckians, A.; Ibragimov, A.; Alt, F.W.; Willerford, D.M.; Abbas, A.K. Functional responses and apoptosis of f CD25(IL-2R alpha)-deficient T cells expressing a transgenic antigen receptor. J. Immunol., 1997, 158(8), 3738-3745.
[PMID: 9103438]
[12]
Liao, W.; Lin, J-X.; il Leonard, W.J. -2 Family cytokines: new insights into the complex roles of il-2 as a broad regulator of t helper cell differentiation. Curr. Opin. Immunol., 2011, 23(5), 598-604.
[http://dx.doi.org/10.1016/j.coi.2011.08.003] [PMID: 21889323]
[13]
Schmiedeberg, K.; Krause, H.; Röhl, F-W.; Hartig, R.; Jorch, G.; Brunner-Weinzierl, M.C. T cells of infants are mature, but hyporeactive due to limited ca2+ influx. PLoS One, 2016, 11(11)E0166633
[http://dx.doi.org/10.1371/journal.pone.0166633] [PMID: 27893767]
[14]
Sakaguchi, S.; Wing, K.; Miyara, M. Regulatory t cells - a brief history and perspective. Eur. J. Immunol., 2007, 37(Suppl. 1), S116-S123.
[http://dx.doi.org/10.1002/eji.200737593] [PMID: 17972355]
[15]
Baldassari, L.E.; Rose, J.W. Daclizumab: development, clinical trials, and practical aspects of use in multiple sclerosis. Neurotherapeutics, 2017, 14(4), 842-858.
[http://dx.doi.org/10.1007/s13311-017-0553-8] [PMID: 28707278]
[16]
Mesaik, M.A.; Halim, S.A.; Ul-Haq, Z.; Choudhary, M.I.; Shahnaz, S.; Ayatollahi, S.A.M.; Murad, S.; Ahmad, A. Immunosuppressive activity of buxidin and e-buxenone from buxus hyrcana. Chem. Biol. Drug Des., 2010, 75(3), 310-317.
[http://dx.doi.org/10.1111/j.1747-0285.2009.00906.x] [PMID: 20659112]
[17]
Kalsoom, S.; Rashid, U.; Shaukat, A.; Abdalla, O.M.; Hussain, K.; Khan, W. In vitro and in silico exploration of il-2 inhibition by small drug-like molecules. Med. Chem. Res., 2013, 22, 5739-5751.
[http://dx.doi.org/10.1007/s00044-013-0564-x]
[18]
Mesaik, M.A. Zaheer-ul-haq; Murad, S.; Ismail, Z.; Abdullah, N.R.; Gill, H.K.; Atta-ur-rahman; Yousaf, M.; Siddiqui, R.A.; Ahmad, A.; Choudhary, M.I. BIological and molecular docking studies on coagulin-h: human il-2 novel natural inhibitor. Mol. Immunol., 2006, 43(11), 1855-1863.
[http://dx.doi.org/10.1016/j.molimm.2005.10.020] [PMID: 16375970]
[19]
Halim, S.A.; Abdalla, O.M.; Mesaik, M.A.; Wadood, A.; Ul-Haq, Z.; Kontoyianni, M. Identification of novel interleukin-2 inhibitors through computational approaches. Mol. Divers., 2013, 17(2), 345-355.
[http://dx.doi.org/10.1007/s11030-013-9431-4] [PMID: 23494734]
[20]
Zia, S.R.; Ul-Haq, Z. Molecular dynamics simulation of interleukin-2 and its complex and determination of the binding free energy. Mol. Simul., 2018, 44, 1411-1425.
[http://dx.doi.org/10.1080/08927022.2018.1513651]
[21]
Halim, S.A. Zaheer-ul-haq. Structure based 3d-qsar studies of interleukin-2 inhibitors: comparing the quality and predictivity of 3d-qsar models obtained from different alignment methods and charge calculations. Chem. Biol. Interact., 2015, 238, 9-24.
[http://dx.doi.org/10.1016/j.cbi.2015.05.018] [PMID: 26051521]
[22]
Lewell, X.Q.; Judd, D.B.; Watson, S.P.; Hann, M.M. Recap--retrosynthetic combinatorial analysis procedure: a powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry. J. Chem. Inf. Comput. Sci., 1998, 38(3), 511-522.
[http://dx.doi.org/10.1021/ci970429i] [PMID: 9611787]
[23]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[24]
Arkin, M.R.; Randal, M.; Delano, W.L. Binding of small molecules to an adaptive protein–protein interface. Proc. Natl. Acad. Sci. USA, 2003, 100(4), 1603-1608.
[http://dx.doi.org/10.1073/pnas.252756299]
[25]
Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. FF14SB: Improving the accuracy of protein side chain and backbone parameters from FF99SB. J. Chem. Theory Comput., 2015, 11(8), 3696-3713.
[http://dx.doi.org/10.1021/acs.jctc.5b00255] [PMID: 26574453]
[26]
Wilson, C.G.M.; Arkin, M.R. Small-molecule inhibitors of il-2/il-2r: lessons learned and applied. Curr. Top. Microbiol. Immunol., 2011, 348, 25-59.
[http://dx.doi.org/10.1007/82_2010_93] [PMID: 20703966]
[27]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/s0169-409x(00)00129-0] [PMID: 11259830]
[28]
Daina, A.; Michielin, O.; Zoete, V. Swissadme: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[29]
Pearlman, D.A.; Case, D.A.; Caldwell, J.W.; Ross, W.S.; Cheatham, T.E. III; DEBOLT, S. AMBER, A package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput. Phys. Commun., 1995, 91, 1-41.
[http://dx.doi.org/10.1016/0010-4655(95)00041-d]
[30]
Case, D.A.; Cheatham, T.E. III; DARDEN, T.; GOHLKE, H.; LUO, R.; MERZ, K.M., JR; ONUFRIEV, A.; SIMMERLING, C.; WANG, B.; WOODS, R.J. The amber biomolecular simulation programs. J. Comput. Chem., 2005, 26(16), 1668-1688.
[http://dx.doi.org/10.1002/jcc.20290] [PMID: 16200636]
[31]
Word, J.M.; Lovell, S.C.; Richardson, J.S.; Richardson, D.C. Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J. Mol. Biol., 1999, 285(4), 1735-1747.
[http://dx.doi.org/10.1006/jmbi.1998.2401] [PMID: 9917408]
[32]
Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model., 2006, 25(2), 247-260.
[http://dx.doi.org/10.1016/j.jmgm.2005.12.005] [PMID: 16458552]
[33]
Jakalian, A.; Bush, B.L.; Jack, D.B.; Bayly, C.I. Fast, efficient generation of high-quality atomic charges. AM1-BCC Model: i. method. J. Comput. Chem., 2000, 21, 132-146.
[http://dx.doi.org/10.1002/(SICI)1096-987x(20000130)21:2<132:aid-jcc5>3.0.CO;2-P]
[34]
Jakalian, A.; Jack, D.B.; Bayly, C.I. Fast, efficient generation of high-quality atomic charges. am1-bcc model: ii. parameterization and validation. J. Comput. Chem., 2002, 23(16), 1623-1641.
[http://dx.doi.org/10.1002/jcc.10128] [PMID: 12395429]
[35]
Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79, 926-935.
[http://dx.doi.org/10.1063/1.445869]
[36]
Berendsen, H.J.C.; Van Postma, J.; Van Gunsteren, W.F.; Dinola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81, 3684-3690.
[http://dx.doi.org/10.1063/1.448118]
[37]
Darden, T.; York, D.; Pedersen, L. Particle mesh ewald: an n⋅log(n) method for ewald sums in large systems. J. Chem. Phys., 1993, 98, 10089-10092.
[http://dx.doi.org/10.1063/1.464397]
[38]
Kräutler, V.; Van Gunsteren, W.F.; Hünenberger, P.H. A fast shake algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J. Comput. Chem., 2001, 22, 501-508.
[http://dx.doi.org/10.1002/1096-987x(20010415)22:5<501:aid-jcc1021>3.0.CO;2-V]
[39]
Roe, D.R.; Cheatham, T.E. III ptraj and cpptraj: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput., 2013, 9(7), 3084-3095.
[http://dx.doi.org/10.1021/ct400341p] [PMID: 26583988]
[40]
Congreve, M.; Carr, R.; Murray, C.; Jhoti, H.A. ‘Rule of three’ for fragment-based lead discovery? Drug Discov. Today, 2003, 8(19), 876-877.
[http://dx.doi.org/10.1016/s1359-6446(03)02831-9] [PMID: 14554012]
[41]
Usmani, S. Theoretical studies on immuno-modulatory protein; University of Karachi: Karachi 2013.
[42]
Mortenson, P.N.; Berdini, V.; O’Reilly, M. Fragment-based approaches to the discovery of kinase inhibitors. Methods Enzymol., 2014, 548, 69-92.
[http://dx.doi.org/10.1016/B978-0-12-397918-6.00003-3] [PMID: 25399642]
[43]
Brenk, R.; Schipani, A.; James, D.; Krasowski, A.; Gilbert, I.H.; Frearson, J.; Wyatt, P.G. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem, 2008, 3(3), 435-444.
[http://dx.doi.org/10.1002/cmdc.200700139] [PMID: 18064617]
[44]
Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (pains) from screening libraries and for their exclusion in bioassays. J. Med. Chem., 2010, 53(7), 2719-2740.
[http://dx.doi.org/10.1021/jm901137j] [PMID: 20131845]
[45]
Kumar, K.; Woo, S.M.; Siu, T.; Cortopassi, W.A.; Duarte, F.; Paton, R.S. Cation-π interactions in protein-ligand binding: theory and data-mining reveal different roles for lysine and arginine. Chem. Sci. (Camb.), 2018, 9(10), 2655-2665.
[http://dx.doi.org/10.1039/c7sc04905f] [PMID: 29719674]
[46]
Cramer, R.D.; Patterson, D.E.; Bunce, J.D. Comparative molecular field analysis (comfa). 1. effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 1988, 110(18), 5959-5967.
[http://dx.doi.org/10.1021/ja00226a005] [PMID: 22148765]
[47]
Martins, G.A.; Cimmino, L.; Shapiro-Shelef, M.; Szabolcs, M.; Herron, A.; Magnusdottir, E.; Calame, K. Transcriptional repressor blimp-1 regulates t cell homeostasis and function. Nat. Immunol., 2006, 7(5), 457-465.
[http://dx.doi.org/10.1038/ni1320] [PMID: 16565721]
[48]
Kallies, A.; Hawkins, E.D.; Belz, G.T.; Metcalf, D.; Hommel, M.; Corcoran, L.M.; Hodgkin, P.D.; Nutt, S.L. Transcriptional repressor blimp-1 is essential for t cell homeostasis and self-tolerance. Nat. Immunol., 2006, 7(5), 466-474.
[http://dx.doi.org/10.1038/ni1321] [PMID: 16565720]
[49]
Zea, A.H.; Stewart, T.; Ascani, J.; Tate, D.J.; Finkel-Jimenez, B.; Wilk, A.; Reiss, K.; Smoyer, W.E.; Aviles, D.H. Activation of the il-2 receptor in podocytes: a potential mechanism for podocyte injury in idiopathic nephrotic syndrome? PLoS One, 2016, 11(7)E0157907
[http://dx.doi.org/10.1371/journal.pone.0157907] [PMID: 27389192]
[50]
Zhao, Y.; Sun, Q.; Zeng, Z.; Li, Q.; Zhou, S.; Zhou, M.; Xue, Y.; Cheng, X.; Xia, Y.; Wang, Q.; Tu, X. Regulation of scn3b/scn3b by interleukin 2 (il-2): il-2 modulates scn3b/scn3b transcript expression and increases sodium current in myocardial cells. BMC Cardiovasc. Disord., 2016, 16, 1-7.
[http://dx.doi.org/10.1186/s12872-015-0179-x] [PMID: 26728597]
[51]
Tejón, G.; Manríquez, V.; De Calisto, J.; Flores-Santibáñez, F.; Hidalgo, Y.; Crisóstomo, N.; Fernández, D.; Sauma, D.; Mora, J.R.; Bono, M.R.; Rosemblatt, M. Vitamin a impairs the reprogramming of tregs into il-17-producing cells during intestinal inflammation. BioMed Res. Int., 2015, 2015137893
[http://dx.doi.org/10.1155/2015/137893] [PMID: 26583087]
[52]
Wang, Z.; Wang, G.; Zhu, X.; Geng, D.; Yang, H. Interleukin-2 is upregulated in patients with a prolapsed lumbar intervertebral disc and modulates cell proliferation, apoptosis and extracellular matrix metabolism of human nucleus pulposus cells. Exp. Ther. Med., 2015, 10(6), 2437-2443.
[http://dx.doi.org/10.3892/etm.2015.2809] [PMID: 26668654]
[53]
Dai, B.; Zhang, J.; Liu, M.; Lu, J.; Zhang, Y.; Xu, Y.; Miao, J.; Yin, Y. The role of ca(2+) mediated signaling pathways on the effect of taurine against streptococcus uberis infection. Vet. Microbiol., 2016, 192, 26-33.
[http://dx.doi.org/10.1016/j.vetmic.2016.06.008] [PMID: 27527761]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy