Skip to main content
Log in

Combined Stresses of Boron and Salinity on Growth of Two Freshwater Algal Species

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

To investigate the combined effects of excess boron (B) and high salinity on the growth of freshwater algal species, Chlorella vulgaris and Microcystis aeruginosa were cultured in the medium with different B and salinities. The results show that high levels of B and salinity inhibited the growth of the two algal species. For C. vulgaris, low levels of B can alleviate the growth inhibition induced by salinity, and low levels of salinity can also relieve the growth inhibition induced by B. In contrast, high levels of salinity have little effect on B toxicity, while high levels of B aggravate salinity stress. For M. aeruginosa, salinity aggravates B toxicity, regardless of salinity levels. B supply worsens salinity stress on M. aeruginosa, regardless of supply doses. These results suggest that it may be possible to control algal bloom by regulating B or salinities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alpaslan M, Gunes A (2001) Interactive effects of boron and salinity stress on the growth, membrane permeability and mineral composition of tomato and cucumber plants. Plant Soil 236:123–128

    Article  CAS  Google Scholar 

  • Arriaza B, Blumenstiel D, Amarasiriwardena D, Standen VG, Vizcarra A (2021) Five thousand years of bellyaches: exploring boron concentration in ancient populations of the Atacama Desert. Am J Phys Anthropol 174(2):254–267

    Article  Google Scholar 

  • Bañuelos GS (2002) Irrigation of broccoli and canola with boron-and selenium-laden effluent. J Environ Qual 31(6):1802–1808

    Article  Google Scholar 

  • Bastías EI, González-Moro MB, González-Murua C (2004) Zea mays L. amylacea from the Lluta Valley (Arica-Chile) tolerates salinity stress when high levels of boron are available. Plant Soil 267(1–2):73–84

  • Chen X, Pei Y (2016) Effects of sodium pentaborate pentahydrate exposure on Chlorella vulgaris growth, chlorophyll content, and enzyme activities. Ecotoxicol Environ Saf 132:353–359

    Article  CAS  Google Scholar 

  • Chen L, Mao F, Kirumba GC, Jiang C, Manefield M, He Y (2015) Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress. Ecotoxicol Environ Saf 122:126–135

    Article  CAS  Google Scholar 

  • Chen X, Su L, Yin X, Pei Y (2019) Responses of Chlorella vulgaris exposed to boron: mechanisms of toxicity assessed by multiple endpoints. Environ Toxicol Phar 70:103208

    Article  CAS  Google Scholar 

  • Cox RA, McCartney MJ, Culkin F (1970) The specific gravity salinity temperature relationship in natural sea water. Deep-Sea Res 17(4):679–689

    Google Scholar 

  • Das P, Lei W, Aziz SS, Obbard JP (2011) Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresource Technol 102(4):3883–3887

    Article  CAS  Google Scholar 

  • Dembitsky VM, Smoum R, Al-Quntar AA, Ali HA, Pergament I, Srebnik M (2002) Natural occurrence of boron-containing compounds in plants, algae and microorganisms. Plant Sci 163(5):931–942

    Article  CAS  Google Scholar 

  • Dordas C, Chrispeels MJ, Brown PH (2000) Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol 124(3):1349–1362

    Article  CAS  Google Scholar 

  • Eraslan F, Inal A, Savasturk O, Gunes A (2007) Changes in antioxidative system and membrane damage of lettuce in response to salinity and boron toxicity. Sci Hortic 114(1):5–10

    Article  CAS  Google Scholar 

  • García-Sánchez F, Simón-Grao S, Martínez-Nicolás JJ, Alfosea-Simón M, Liu C, Chatzissavvidis C, Perez-Perez JG, Cámara-Zapata JM (2020) Multiple stresses occurring with boron toxicity and deficiency in plants. J Hazard Mater 397:122713

    Article  Google Scholar 

  • Hiremath S, Mathad P (2010) Impact of salinity on the physiological and biochemical traits of Chlorella vulgaris Beijerinck. J Algal Biomass Util 1(2):51–59

    Google Scholar 

  • Li H, Liu C, Zhao L, Zhao Q, Ma C (2013) Effect of excess boron on growth and composition of freshwater phytoplankton. J Agro-Environ Sci 32(2):232–237

    CAS  Google Scholar 

  • Li S, Dao GH, Tao Y, Zhou J, Jiang HS, Xue YM, Yu WW, Yong XL, Hu HY (2020) The growth suppression effects of UV-C irradiation on Microcystis aeruginosa and Chlorella vulgaris under solo-culture and co-culture conditions in reclaimed water. Sci Total Environ 713:136374

    Article  CAS  Google Scholar 

  • Liu M, Guo Q, Luo L, He T (2020) Environmental impacts of geothermal waters with extremely high boron concentrations: insight from a case study in Tibet, China. J Volcanol Geoth Res 397:106887

    Article  CAS  Google Scholar 

  • Luangpipat T, Chisti Y (2017) Biomass and oil production by Chlorella vulgaris and four other microalgae—effects of salinity and other factors. J Biotechnol 257:47–57

    Article  CAS  Google Scholar 

  • Ma Z, Fang T, Thring RW, Li Y, Yu H, Zhou Q, Zhao M (2015) Toxic and non-toxic strains of Microcystis aeruginosa induce temperature dependent allelopathy toward growth and photosynthesis of Chlorella vulgaris. Harmful Algae 48:21–29

    Article  CAS  Google Scholar 

  • McBride L, Chorney W, Skok J (1971) Growth of Chlorella in relation to boron supply. Bot Gaz 132(1):10–13

    Article  CAS  Google Scholar 

  • Nagasawa H, Iizuka A, Yamasaki A, Yanagisawa Y (2011) Utilization of bipolar membrane electrodialysis for the removal of boron from aqueous solution. Ind Eng Chem Res 50(10):6325–6330

    Article  CAS  Google Scholar 

  • OECD (2011) Freshwater alga and cyanobacteria, growth inhibition test. OECD Guidelines for the Testing of Chemicals, Section 2, Test No. 201

  • Saavedra R, Muñoz R, Taboada ME, Vega M, Bolado S (2018) Comparative uptake study of arsenic, boron, copper, manganese and zinc from water by different green microalgae. Bioresource Technol 263:49–57

    Article  CAS  Google Scholar 

  • Smith TE, Grattan SR, Grieve CM, Poss JA, Suarez DL (2010) Salinity’s influence on boron toxicity in broccoli: I. Impacts on yield, biomass distribution, and water use. Agr Water Manage 97(6):777–782

    Article  Google Scholar 

  • Srivastava A, Ko SR, Ahn CY, Oh HM, Ravi AK, Asthana RK (2016) Microcystin biosynthesis and mcyA expression in geographically distinct Microcystis strains under different nitrogen, phosphorus, and boron regimes. BioMed Res Int 2016:5985987

    Article  Google Scholar 

  • Talebi AF, Tabatabaei M, Mohtashami SK, Tohidfar M, Moradi F (2013) Comparative salt stress study on intracellular ion concentration in marine and salt-adapted freshwater strains of microalgae. Not Sci Biol 5(3):309–315

    Article  CAS  Google Scholar 

  • Tanaka M, Fujiwara T (2008) Physiological roles and transport mechanisms of boron: perspectives from plants. Pflügers Arch Eur J Physiol 456(4):671–677

    Article  CAS  Google Scholar 

  • Türker OC, Böcük H, Yakar A (2013) The phytoremediation ability of a polyculture constructed wetland to treat boron from mine effluent. J Hazard Mater 252:132–141

    Article  Google Scholar 

  • Türker OC, Türe C, Yakar A, Saz Ç (2017) Engineered wetland reactors with different media types to treat drinking water contaminated by boron. J Clean Prod 168:823–832

    Article  Google Scholar 

  • Xia J, Hua T, Xue Y, Zhao L, Sun H, Liu C (2020) Myriophyllum elatinoides: a potential candidate for the phytoremediation of water with low level boron contamination. J Hazard Mater 401:123333

    Article  Google Scholar 

  • Xu RJ, Xing XR, Zhou QF, Jiang GB, Wei FS (2010) Investigations on boron levels in drinking water sources in China. Environ Monit Assess 165:15–25

    Article  CAS  Google Scholar 

  • Yermiyahu U, Ben-Gal A, Keren R, Reid RJ (2008) Combined effect of salinity and excess boron on plant growth and yield. Plant Soil 304(1–2):73–87

    Article  CAS  Google Scholar 

  • Zhang Y, Xu Q, Xi B (2013) Effect of NaCl salinity on the growth, metabolites, and antioxidant system of Microcystis aeruginosa. J Freshwater Ecol 28(4):477–487

    Article  CAS  Google Scholar 

  • Zhang X, Lin C, Guo B, Cao Y, Lei K, Zhou X, Renqin D (2018) Distribution and geochemical processes of boron in the multimedia of Lake Qinghai, China. J Great Lakes Res 44(5):1035–1042

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education of China (T2017002) and the Fundamental Research Funds of the Central Universities. We thank Guoguang Li at Nankai University for laboratory assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunguang Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Dong, P., Sun, H. et al. Combined Stresses of Boron and Salinity on Growth of Two Freshwater Algal Species. Bull Environ Contam Toxicol 107, 147–153 (2021). https://doi.org/10.1007/s00128-021-03230-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-021-03230-7

Keywords

Navigation