Skip to main content
Log in

R-CRISIS: 35 years of continuous developments and improvements for probabilistic seismic hazard analysis

  • Original Article
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

A new version of CRISIS, the program to perform probabilistic seismic hazard analysis (PSHA), has been released. This new version, called R-CRISIS v20, includes several additions and improvements with respect to previous ones, in the geometric, attenuation and seismicity models, besides having implemented a parallelized computational process that speeds up the computations up to five times, adding flexibility to the users to perform state-of-the-art PSHA and more complex and detailed analyses within reasonable computational times. These additions have been implemented with the objective of having better representations of the different components of a PSHA whilst preserving all the options that were available in previous versions of the program. R-CRISIS remains being a free and open-source program, two characteristics that combined with its flexible programming architecture provide room for future developments of this mature and widely used tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Code availability

The desktop application for R-CRISIS is available at www.r-crisis.com and the code is available upon request.

References

  • Abrahamson NA, Silva WJ (1997) Empirical response spectral attenuation relationships for shallow crustal earthquakes. Seismol Res Lett 68:94–127

    Article  Google Scholar 

  • Abrahamson NA, Silva WJ, Kamai R (2014) Summary of the ASK14 ground motion relation for active crustal regions. Earthq Spectra 30:1025–1055

    Article  Google Scholar 

  • Abrahamson NA, Gregor N, Addo K (2016) BC Hydro ground motion prediction equations for subduction earthquakes. Earthquake Spectra 32(1):23–44

    Article  Google Scholar 

  • Akkar S, Bommer JJ (2007) Empirical prediction equations for peak ground velocity derived from strong-motions records from Europe and the middle east. Bull Seismol Soc Am 97:511–530

    Article  Google Scholar 

  • Akkar S, Bommer JJ (2010) Empirical equations for the prediction of PGA, PGV and spectral accelerations in Europe, the Mediterranean region and the Middle East. Seismol Res Lett 81:195–206

    Article  Google Scholar 

  • Arroyo D, García D, Ordaz M, Mora MA, Singh SK (2010) Strong ground-motion relations for Mexican interplate earthquakes. J Seismolog 14:769–785

    Article  Google Scholar 

  • Asociación Colombiana de Ingeniería Sísmica – AIS (2013) Recomendaciones para requisitos sísmicos de estructuras diferentes de edificaciones (in Spanish). AIS-180 Committee. Bogotá, Colombia

  • Atkinson GM, Boore DM (2003) Empirical ground-motion relations for the subduction-zone earthquakes and their application to Cascadia and other regions. Bull Seismol Soc Am 93:1703–1729

    Article  Google Scholar 

  • Atkinson GM, Boore DM (2006) Earthquake ground-motion prediction equations for Eastern North America. Bull Seismol Soc Am 96:2181–2205

    Article  Google Scholar 

  • Atkinson GM, Boore DM (2008) Ground-motion prediction equations for Eastern North America from a referenced empirical approach: implications for epistemic uncertainty. Bull Seismol Soc Am 98:1304–1318

    Article  Google Scholar 

  • Baker JW, Jayaram N (2008) Correlation of spectral acceleration values from NGA ground motion models. Earthq Spectra 24(1):299–317

    Article  Google Scholar 

  • Bazzurro P, Cornell CA (1999) Disaggregation of seismic hazard. Bull Seismol Soc Am 89:501–520

    Article  Google Scholar 

  • Bazzurro P, Cornell A (2004a) Ground-motion amplification in nonlinear soil sites with uncertain properties. Bull Seismol Soc Am 94(6):2090–2109

    Article  Google Scholar 

  • Bazzurro P, Cornell A (2004b) Nonlinear soil-effects in probabilistic seismic-hazard analysis. Bull Seismol Soc Am 94(6):2110–2123

    Article  Google Scholar 

  • Bender B, Perkins DM (1987) SEISRISK III: A computer program for seismic hazard estimation. United States Geological Survey – USGS. Bulletin 1772. 48pp

  • Bindi D, Pacor F, Luzi L, Puglia R, Massa M, Ameri G, Paolucci R (2011) Ground-motion prediction equations derived from the Italian strong motion database. Bull Earthq Eng 9:1899–1920

    Article  Google Scholar 

  • Bindi D, Cotton F, Kotha SR, Bosse C, Stromeyer D, Grunthal G (2017) Application-driven ground motion prediction equation for seismic hazard assessments in non-cratonic moderate-seismicity areas. J Seismolog 21(5):1201–1218

    Article  Google Scholar 

  • Boore DM, Atkinson GM (2008) Ground-motion prediction equations for the average horizontal component of PGA, PGV and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthq Spectra 24:99–138

    Article  Google Scholar 

  • Boore DM, Stewart JO, Seyhan E, Atkinson GM (2014) NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthq Spectra 30:1057–1085

    Article  Google Scholar 

  • Bozorgnia Y, Abrahamson NA, Atik LA, Ancheta TD, Atkinson GM, Baker JW, Baltay A, Boore DM, Campbell KW, Chiou B, Darragh R, Day S, Donahue J, Graves RW, Gregor N, Hanks T, Idriss IM, Kamai R, Kishida T, Kottke A, Mahin SA, Rezaeian S, Rowshandel B, Seyhan E, Shahi S, Shantz T, Silva W, Spudich P, Steward JP, Watson-Lamprey J, Wooddell K, Youngs R (2014) NGA-West2 research project. Earthq Spectra 30:973–987

    Article  Google Scholar 

  • Brune JN (1970) Tectonic stress and the spectra of seismic shear waves from earthquakes. J Geophys Res 75(26):4997–5009

    Article  Google Scholar 

  • Campbell KW (2003) Prediction of strong ground motion using the hybrid empirical method and its use in the development of ground-motion (attenuation) relations in Eastern North America. Bull Seismol Soc Am 93:1012–1033

    Article  Google Scholar 

  • Campbell KW, Bozorgnia Y (2003) Updated near-source ground motion (attenuation) relations for the horizontal and vertical components of peak ground acceleration and acceleration response spectra. Bull Seismol Soc Am 93:315–331

    Article  Google Scholar 

  • Campbell KW, Bozorgnia Y (2008) NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.1 to 10s. Earthq Spectra 24:139–171

    Article  Google Scholar 

  • Campbell KW, Bozorgnia Y (2014) NGA-West2 ground motion model for the average horizontal components of PGA, PGV and 5% damped linear acceleration response spectra. Earthq Spectra 30:1087–1115

    Article  Google Scholar 

  • Cardona OD, Ordaz M, Mora M, Salgado-Gálvez MA, Bernal GA, Zuloaga D, Marulanda MC, Yamín LE, González D (2014) Global risk assessment: a fully probabilistic seismic and tropical cyclone wind risk assessment. Int J Disaster Risk Reduct 10:461–476

    Article  Google Scholar 

  • Cauzzi C, Faccioli E (2008) Broadband (0.05 to 20 s) prediction of displacement response spectra based on worldwide digital records. J Seismolog 12:453–475

    Article  Google Scholar 

  • Cauzzi C, Faccioli E, Vanini M, Bianchini A (2015) Updated predictive equations for broadband (0.01–10 s) horizontal response spectra and peak ground motions based on a global dataset of digital acceleration records. Bull Earthq Eng. 13(6):1587–1612

    Article  Google Scholar 

  • Chávez JA (2006) Attenuation relationships for spectral acceleration in Peru. National University of Engineering, Faculty of Civil Engineering, Lima, Peru

    Google Scholar 

  • Chiou B, Youngs R (2008) An NGA model for the average horizontal component of peak ground motion and response spectra. Earthq Spectra 24:173–215

    Article  Google Scholar 

  • Chiou B, Youngs R (2014) Update of the Chiou and youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthq Spectra 30:1117–1153

    Article  Google Scholar 

  • Climent A, Taylor W, Ciudad Real M, Strauch W, Villagran M, Dahle A, Bungum H (1994) Spectral strong motion attenuation in Central America. NORSAR Technical Report No. 2–17

  • Contreras V, Boroschek R (2012) Strong ground motion attenuation relations for Chilean Subduction Zone Interface Earthquakes. Proceedings of the 15th World Conference on Earthquake Engineering. Lisbon, Portugal

  • Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58:1583–1606

    Article  Google Scholar 

  • D’Amico V, Melleti C, Martinelli F (2012) Probabilistic seismic hazard assessment in the high-risk area of south-eastern Sicily (Italy). Bollettino di Geofisica Teorica e Applicata 53:19–36

    Google Scholar 

  • Darzi A, Zolfaghari MR, Cauzzi C, Fah D (2019) An empirical ground-motion model for horizontal PGV PGA and 5% damped elastic response spectra (0.01–10 s) in Iran. Bull Seismol Soc Am 109(3):1041–1057

    Article  Google Scholar 

  • Derras B, Bard PY, Cotton F (2014) Towards fully data driven ground-motion prediction models for Europe. Bull Earthq Eng 12(1):495–516

    Article  Google Scholar 

  • Derras B, Bard PY, Cotton F (2016) Site-condition proxies, ground motion variability, and data-driven GMPEs: Insights from the NGA-West2 and RESOURCE data sets. Earthq Spectra 32(4):2027–2056

    Article  Google Scholar 

  • de Riesgos E, Naturales – ERN, (2020) R-CAPRA. Program for performing fully probabilistic and multi-hazard risk assessments, Mexico City, Mexico

    Google Scholar 

  • de Transporte M, Colombiana A, de Ingeniería Sísmica – AIS and Instituto Nacional de Vías – INVIAS, (2014) Norma Colombiana de diseño de puentes CCP 14 (in Spanish). Bogotá D.C, Colombia

    Google Scholar 

  • EPRI – Electrical Power Research Institute (2006) Program on technology innovation: use of the cumulative absolute velocity (CAV) in determining effects of small magnitude earthquakes on seismic hazard analyses. Report No. 1014099. California, USA

  • Esteva L (1967) Criterios para la construcción de espectros de diseño sísmico (in Spanish). Proceedings of the 3rd Pan-American Symposium of Structures. Caracas, Venezuela

  • Esteva L (1970) Regionalización sísmica de México para fines de ingeniería (in Spanish). Universidad Nacional Autónoma de México, Instituto de Ingeniería

    Google Scholar 

  • Faccioli E, Bianchini A, Villani M (2010) New ground motion prediction equations for T>1s and their influence on seismic hazard assessment. Proceedings of the University of Tokyo Symposium on Long-Period Ground Motion and Urban Disaster Mitigation. Tokyo, Japan

  • Field EH, Jordan TH, Cornell CA (2003) OpenSHA: A developing community-modeling environment for seismic hazard analysis. Seismol Res Lett 74:406–419

    Article  Google Scholar 

  • García D, Singh SK, Herráiz M, Ordaz M, Pacheco JF (2005) Inslab earthquakes of Central Mexico: peak ground-motion parameters and response spectra. Bull Seismol Soc Am 95:2272–2282

    Article  Google Scholar 

  • Global earthquake model –GEM (2020) Openquake. Program for PSHA. https://www.globalquakemodel.org/oq-platform

  • Gómez AA (2017) Macroseismic intensity attenuation model for Italy and Colombia. Istituto Nazionale di Geofisica e Vulcanologia, sezione di Milano

  • Hale C, Abrahamson N, Bozorgnia Y (2018) Probabilistic seismic hazard analysis code verification. PEER Report. Pacific Earthquake Engineering Research Center, Berkeley, California, USA

    Google Scholar 

  • Idriss I (2008) An NGA Empirical Model for Estimating the Horizontal Spectral Values Generated By Shallow Crustal Earthquakes. Earthq Spectra 24:217–242

    Article  Google Scholar 

  • Idriss I (2014) An NGA-West2 Empirical Model for Estimating the Horizontal Spectral Values Generated by Shallow Crustal Earthakes. Earthq Spectra 30:1155–1177

    Article  Google Scholar 

  • IGN – Instituto Geográfico Nacional and UPM – Universidad Politécnica de Madrid (2013) Actualización de mapas de peligrosidad sísmica de España 2012 (in Spanish). Madrid, Spain

  • IRSN (2005) Propositions pour la sélection et la génération d’accélérogrammes intégrant la variabilité des indicateurs du movement sismique (in French). Rapport DEI/SART/2005–022

  • Ischuk A, Bjerrum LW, Kamchybekov M, Abdrakhmatov K, Lindholm C (2017) Probabilistic Seismic Hazard Assessment for the Area of Kyrgyzstan, Tajikistan, and Eastern Uzbekistan, Central Asia. Bull Seismol Soc Am 108(1):130–144

    Article  Google Scholar 

  • Jaimes M, Reinoso E, Ordaz M (2006) Comparison of methods to predict response spectra at instrumented sites given the magnitude and distance of an Earthquake. J Earthquake Eng 10:887–902

    Article  Google Scholar 

  • Jaimes MA, Ramírez-Gaytán A, Reinoso E (2015) Ground-motion prediction model from intermediate-depth intraslab earthquakes at the hill and lake-bed zones of Mexico City. J Earthquake Eng 19(8):1260–1278

    Article  Google Scholar 

  • Jaimes MA, Candia G (2019) Interperiod correlation model for Mexican interface earthquakes. Earthq Spectra 35(3):1351–1365

    Article  Google Scholar 

  • Kalyand JG, Dodagoudar GR (2011) Seismic input motion for Kanchipuram, South India. International Journal of Earth Sciences and Engineering 4:189–192

    Google Scholar 

  • Kanno T, Narita A, Moriwawa N, Fujiwara H, Fukushima Y (2006) A new attenuation relation for strong ground motion in Japan based on recorded data. Bull Seismol Soc Am 96:879–897

    Article  Google Scholar 

  • Kostov M (2005) Site specific estimation of cumulative absolute velocity. Proceedings of the 18th International Conference on Structural Mechanics in Reactor Technology. Beijing, China

  • Ku CS, Juang CH, Chang CW, Ching J (2012) Probabilistic version of the Robertson and Wride method for liquefaction evaluation: development and application. Can Geotech J 49(1):27–44

    Article  Google Scholar 

  • Lanzano G, Luzi L, Pacor F, Felicetta C, Puglia R, Sgobba S, D’Amico M (2019) A revised ground-motion prediction model for shallow crustal earthquakes in Italy. Bull Seismol Soc Am 109(2):525–540

    Article  Google Scholar 

  • Lin P-S, Lee C-T (2008) Ground-motion attenuation relationships for subduction-zone earthquakes in Northeastern Taiwan. Bull Seismol Soc Am 98:220–240

    Article  Google Scholar 

  • Lin T, Harmsen SC, Baker JW, Luco N (2013) Conditional spectrum computation incorporating multiple causal earthquakes and ground-motion prediction models. Bull Seismol Soc Am 103(2A):1103–1116

    Article  Google Scholar 

  • Lindholm C, Parvez IA, Kühn D (2016) Probabilistic earthquake hazard assessment for Peninsular India. J Seismolog 20(2):629–653

    Article  Google Scholar 

  • Marulanda MC, Carreño ML, Cardona OD, Ordaz MG, Barbat AH (2013) Probabilistic earthquake risk assessment using CAPRA: application to the city of Barcelona. Spain Natural Hazards 69:59–84

    Article  Google Scholar 

  • McGuire RK (1967) FRISK: A computer program for seismic risk analysis using faults as earthquake sources. United States Geological Survey –USGS. 90pp

  • McVerry GH, Zhao JX, Abrahamson NA, Somerville PG (2006) New Zealand acceleration response spectrum attenuation relations for crustal and subduction zone earthquakes. Bull New Zealand Nat Soc Earthq Eng 39:1–58

    Article  Google Scholar 

  • Meletti C, Galadini F, Valensise G, Stucchi M, Basili R, Barba S, Vannucci G, Boschi E (2008) A seismic source zone model for the seismic hazard assessment of the Italian territory. Tectonophysics 450:85–108

    Article  Google Scholar 

  • Menon A, Lai CG, Macchi G (2004) Seismic Hazard Assessment of the Historical site of JAM in Afghanistan and Stability Analysis of the Minaret. J Earthquake Eng 8(1):251–294

    Article  Google Scholar 

  • Ministerio de Ambiente, Vivienda y Desarrollo Territorial – MAVDT (2010). Reglamento Colombiano de construcción sismo resistente. NSR-10 (in Spanish). Bogotá D.C., Colombia

  • Ministerio de Vivienda, Construcción y Saneamiento – MVCS (2018). Resolución Ministerial Nº 355–2018-Vivienda. Modificación a la Norma Técnica E.030 Diseño Sismorresistente del Numeral III.3 Estructuras, del Título III Edificaciones del Reglamento de Edificaciones. Perú (in Spanish). Available at: https://cdn.www.gob.pe/uploads/document/file/217118/RM-355-2018-VIVIENDA.pdf. Last accessed: September 9th, 2020

  • Montalva GA, Bastías N, Rodríguez-Marek A (2017) Ground-motion prediction equation for the Chilean Subduction Zone. Bull Seismol Soc Am 107(2):901–911

    Article  Google Scholar 

  • Ordaz M (1991) CRISIS. Brief description of the program CRISIS. Internal report. Institute of Solid Earth Physics. University of Bergen, Norway

  • Ordaz M (2000) Metodología para la evaluación del riesgo sísmico enfocada a la gerencia de seguros por terremoto (in Spanish). Universidad Nacional Autónoma de México

  • Ordaz M, Singh SK (1992) Source spectra and spectral attenuation of seismic waves from Mexican earthquakes, and evidence of amplification in the hill zone of Mexico City. Bull Seismol Soc Am 82(1):24–43

    Google Scholar 

  • Ordaz M, Martinelli F, D’Amico V, Meletti C (2013) CRISIS2008: a flexible tool to perform probabilistic seismic hazard assessment. Seismol Res Lett 84:495–504

    Article  Google Scholar 

  • Ordaz M, Cardona O, Salgado-Gálvez MA, Bernal G, Singh K, Zuloaga D (2014) Probabilistic seismic hazard assessment at global level. Int J Disaster Risk Reduct 10:419–427

    Article  Google Scholar 

  • Ordaz M, Arroyo D (2016) On uncertainties in PSHA. Earthq Spectra 32(3):1405–1418

    Article  Google Scholar 

  • Ordaz M, Salgado-Gálvez MA, Pérez-Rocha LE, Cardona OD, Mena-Hernández U (2017) Optimum earthquake design coefficients based on probabilistic seismic hazard analyses: theory and applications. Earthq Spectra 33(4):1455–1474

    Article  Google Scholar 

  • Ordaz M, Salgado-Gálvez MA (2020) R-CRISIS validation and verification document. Technical report. Mexico City, Mexico. Available at: http://www.r-crisis.com/knowledge/documentation/

  • Ordaz M, Mánica M, Ovando E, Osorio L, Madrigal MC, Salgado-Gálvez MA (2020) Probabilistic liquefaction hazard analysis (PLHA) revisited. Proceedings of the 17th World Conference on Earthquake Engineering. Sendai, Japan.

  • Pankow KL, Pechmann JC (2004) The SEA99 Ground-motion predictive relations for extensional tectonic regimes: revisions and a new peak ground velocity relation. Bull Seismol Soc Am 94(1):341–348

    Article  Google Scholar 

  • Pasolini C, Albarello D, Gasperini P, D’Amico V, Lolli B (2008) The attenuation of seismic intensity in Italy, Part II: Modeling and validation. Bull Seismol Soc Am 98:692–708

    Article  Google Scholar 

  • Pérez-Rocha LE, Ordaz M (2008) Maxma earthquakes for seismic design of structures. Proceedings of the 14th World Conference on Earthquake Engineering. Beijing, China.

  • Peruzza L (2012) Personal communication

  • Peruzza L, Azzaro R, Gee R, D’Amico S, Langer H, Lombardo G, Pace B, Pagani M, Panzera F, Ordaz M, Suárez ML, Tusa G (2017) When probabilistic seismic Hazard climbs volcanoes: the Mt Etna case, Italy – Part 2: computational implementation and first results. Nat Hazards Earth Syst Sci 17:1999–2015

    Article  Google Scholar 

  • Pezeshk S, Zandieh A (2011) Hybrid empirical ground-motion prediction equations for Eastern North America using NGA models and updated seismological parameters. Bull Seismol Soc Am 101(4):1859–1870

    Article  Google Scholar 

  • Pezeshk S, Zandieh A, Campbell KW, Tavakoli B (2018) Ground-motion prediction equations for Central and Eastern North America using the hybrid empirical method and NGA-West2 empirical ground-motion models. Bull Seismol Soc Am 108(4):2278–2304

    Article  Google Scholar 

  • Reyes C (1998) El estado límite de servicio en el diseño sísmico de edificios (in Spanish). Ph.D. Thesis. Universidad Nacional Autónoma de México

  • Rosenblueth E (1976) Optimum design for infrequent disturbances. J Struct Div Am Soc Civil Eng ST9:1807–1825

    Google Scholar 

  • Sabetta F, Pugliese A (1996) Estimation of response spectra and simulation of nonstationary earthquake ground motions. Bull Seismol Soc Am 86:337–352

    Google Scholar 

  • Sadigh K, Chang CY, Egaj JA, Makdisi FI, Youngs RR (1997) Attenuation relationships for shallow crustal earthquakes based on California strong motion data. Seismol Res Lett 68:190–189

    Article  Google Scholar 

  • Salgado-Gálvez MA, Bernal GA, Yamin LE, Cardona OD (2010) Evaluación de la amenaza sísmica de Colombia. Actualización y uso en las nuevas normas colombianas de diseño sismo resistente NSR-10 (in Spanish). Revista de Ingeniería, Universidad de los Andes 32:28–37

    Google Scholar 

  • Salgado-Gálvez MA, Zuloaga D, Bernal GA, Mora MG, Cardona OD (2014) Fully probabilistic seismic risk assessment considering local site effects for the portfolio of buildings in Medellín Colombia. Bull Earthq Eng 12:671–695

    Article  Google Scholar 

  • Salgado-Gálvez MA, Bernal GA, Cardona OD (2016) Evaluación probabilista de la amenaza ísmica de Colombia con fines de actualización de la Norma Colombiana de Diseño de Puentes CCP-14 (in Spanish). Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 32(4):230–239

    Article  Google Scholar 

  • Scherbaum F, Bommer JJ, Bungum H, Cotton F, Abrahamson NA (2005) Composite ground-motion models and logic trees: methodology, sensitivities and uncertainties. Bull Seismol Soc Am 95(5):1575–1593

    Article  Google Scholar 

  • Secanell R. (2012). Personal communication.

  • Sharma ML, Douglas J, Bungum H, Kotadia J (2009) Ground-motion prediction equations based on data from the Himalayan and Zagros Regions. J Earthquake Eng 13(8):1191–1210

    Article  Google Scholar 

  • Singh SK, Bazan E, Esteva L (1980) Expected earthquake magnitude from a fault. Bull Seismol Soc Am 70(3):903–914

    Article  Google Scholar 

  • Spudich P, Joyner WB, Lindh AG, Boore DM, Margaris BM, Fletcher JB (1999) SEA99: a revised ground motion prediction relation for use in extensional tectonic regimes. Bull Seismol Soc Am 89:1156–1170

    Article  Google Scholar 

  • Superintendencia Financiera de Colombia—SFC (2017) Circular 06, Modelos para la estimación de pérdidas en el ramo de terremoto (in Spanish). Bogotá D.C, Colombia

    Google Scholar 

  • Tavakoli B, Pezeshk S (2005) Empirical-stochastic ground-motion prediction for Eastern North America. Bull Seismol Soc Am 95:2283–2296

    Article  Google Scholar 

  • Thomas P, Wong I, Abrahamson NA (2010) Verification of probabilistic seismic hazard analysis computer programs. PEER Report 2010/106. Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, USA

  • Toro GR, Abrahamson NA, Schneider JF (1997) A model of strong ground motions from earthquakes in Central and Eastern North America: best estimates and uncertainties. Seismol Res Lett 68:41–57

    Article  Google Scholar 

  • Torres MA, Jaimes MA, Reinoso E, Ordaz M (2014) Event-based approach for probabilistic flood risk assessment. Int J River Basin Manag 12(4):377–389

    Article  Google Scholar 

  • Tromans IJ, Aldama-Bustos G, Douglas J, Lessi-Cheimariou A, Hunt S, Davi M, Musson RMW, Garrard G, Strasser FO, Robertson C (2019) Probabilistic seismic hazard assessment for a new-build nuclear power plant site in the UK. Bull Earthq Eng 17(1):1–36

    Article  Google Scholar 

  • UNISDR – United Nations International Strategy for Disaster Risk Reduction (2017) GAR Atlas. Switzerland, Geneva

    Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement. Bull Seismol Soc Am 84(4):974–1002

    Google Scholar 

  • Woo G (1996) Kernel Estimation methods for seismic hazard area source modeling. Bull Seismol Soc Am 68(2):353–362

    Google Scholar 

  • Yenier E, Atkinson GM (2015) Regionally adjustable generic ground-motion prediction equation based on equivalent point-source simulations: application to Central and Eastern North America. Bull Seismol Soc Am 105(4):1989–2009

    Article  Google Scholar 

  • Youngs RR, Chiou SJ, Silva WJ, Humphrey JR (1997) Strong ground motion attenuation relationships for subduction zone earthquakes. Seismol Res Lett 68:58–73

    Article  Google Scholar 

  • Zhao JX, Zhang J, Asano A, Ohno Y, Oouchi T, Takahashi T, Ogawa H, Irikura K, Thio HK, Somerville PG, Fukushima Y (2006) Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bull Seismol Soc Am 96:898–913

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the two anonymous reviewers and the Associate Editor who provided important suggestions to improve the initial version of this manuscript.

Funding

MASG obtained partial support through the Severo Ochoa Centers of Excellence Program (Ref. CEX2018-000797-S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Ordaz.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ordaz, M., Salgado-Gálvez, M.A. & Giraldo, S. R-CRISIS: 35 years of continuous developments and improvements for probabilistic seismic hazard analysis. Bull Earthquake Eng 19, 2797–2816 (2021). https://doi.org/10.1007/s10518-021-01098-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-021-01098-w

Keywords

Navigation