Skip to main content
Log in

Evaluation of Mechanical and Thermal Properties of Hydroxyapatite-levan Composite Bone Graft

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Biodegradable materials have been received great attention as bone graft substitutes for bone regeneration and tissue engineering. However, their low mechanical property remains a major challenge for the use in load-bearing applications. Here, we developed mechanically reinforced composite scaffold containing adhesive levan as a binder for sintered hydroxyapatite (sHAp) and then examined the mechanical and thermal properties of the composite scaffold. We found that sHAp-levan composite scaffold exhibited remarkably enhanced mechanical strength, which is similar to that of polymethyl methacrylate (PMMA) bone cement. This composite scaffold can be utilized as a promising bone graft for bone regeneration and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weiner, S. and H. D. Wagner (1998) The material bone: structure-mechanical function relations. Ann. Rev. Mater. Sci. 28: 271–298.

    Article  CAS  Google Scholar 

  2. Dimitriou, R., E. Jones, D. McGonagle, and P. V. Giannoudis (2011) Bone regeneration: current concepts and future directions. BMC Med. 9: 66.

    Article  Google Scholar 

  3. Wang, W. and K. W. K. Yeung (2017) Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact. Mater. 2: 224–247.

    Article  Google Scholar 

  4. Puppi, D., F. Chiellini, A. M. Piras, and E. Chiellini (2010) Polymeric materials for bone and cartilage repair. Prog. Polym. Sci. 35: 403–440.

    Article  CAS  Google Scholar 

  5. Rezwan, K., Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 27: 3413–3431.

    Article  CAS  Google Scholar 

  6. Wang, Z., S. Wang, Y. Marois, R. Guidoin, and Z. Zhang (2005) Evaluation of biodegradable synthetic scaffold coated on arterial prostheses implanted in rat subcutaneous tissue. Biomaterials. 26: 7387–7401.

    Article  CAS  Google Scholar 

  7. Vamze, J., M. Pilmane, and A. Skagers (2015) Biocompatibility of pure and mixed hydroxyapatite and α-tricalcium phosphate implanted in rabbit bone. J. Mater. Sci. Mater. Med. 26: 73.

    Article  Google Scholar 

  8. Zhao, Y., Y. Zhang, F. Ning, D. Guo, and Z. Xu (2007) Synthesis and cellular biocompatibility of two kinds of HAP with different nanocrystal morphology. J. Biomed Mater. Res. B Appl. Biomater. 83: 121–126.

    Article  Google Scholar 

  9. Siddiqui, H. A., K. L. Pickering, and M. R. Mucalo (2018) A review on the use of hydroxyapatite-carbonaceous structure composites in bone replacement materials for strengthening purposes. Materials. 11: 1813.

    Article  Google Scholar 

  10. Prokopiev, O. and I. Sevostianov (2006) Dependence of the mechanical properties of sintered hydroxyapatite on the sintering temperature. Mat. Sci. Eng. A. 431: 218–227.

    Article  Google Scholar 

  11. Stea, S., M. Visentin, L. Savarino, M. E. Donati, A. Pizzoferrato, A. Moroni, and V. Caja (1995) Quantitative analysis of the bone-hydroxyapatite coating interface. J. Mater. Sci. Mater. Med. 6: 455–459.

    Article  CAS  Google Scholar 

  12. Wei, G. and P. X. Ma (2004) Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials. 25: 4749–4757.

    Article  CAS  Google Scholar 

  13. Fu, Y. C., H. Nie, M. L. Ho, C. K. Wang, and C. H. Wang (2008) Optimized bone regeneration based on sustained release from three-dimensional fibrous PLGA/HAp composite scaffolds loaded with BMP-2. Biotechnol. Bioeng. 99: 996–1006.

    Article  CAS  Google Scholar 

  14. Liu, C. (2015) Collagen-hydroxyapatite composite scaffolds for tissue engineering. pp. 211–234. In: M. Mucalo (ed.). Hydroxyapatite (Hap) for Biomedical Applications. Woodhead Publishing, Sawston, UK.

    Chapter  Google Scholar 

  15. Pandharipande, S. L. and S. S. Sondawale (2016) Review on synthesis of hydroxyapatite and its bio-composites. Int. J. Sci. Eng. Technol. Res. 5: 3410–3416.

    Google Scholar 

  16. Wahl, D. and J. T. Czernuszka (2006) Collagen-hydroxyapatite composites for hard tissue repair. Eur. Cells. Mater. 11: 43–56.

    Article  CAS  Google Scholar 

  17. Kim, K. H., C. B. Chung, Y. H. Kim, K. S. Kim, C. S. Han, and C. H. Kim (2006) Cosmeceutical properties of levan produced by Zymomonas mobilis. J. Cosmet. Sci. 56: 395–406.

    Google Scholar 

  18. Liu, J., J. Luo, H. Ye, and X. Zeng (2012) Preparation, antioxidant and antitumor activities in vitro of different derivatives of levan from endophytic bacterium Paenibacillus polymyxa EJS-3. Food. Chem. Toxicol. 50: 767–772.

    Article  CAS  Google Scholar 

  19. Yoo, S. H., E. J. Yoon, J. Cha, and H. G. Lee (2004) Antitumor activity of levan polysaccharides from selected microorganisms. Int. J. Biol. Macromol. 34: 37–41.

    Article  CAS  Google Scholar 

  20. Axente, E., F. Sima, L. E. Sima, M. Erginer, M. S. Eroglu, N. Serban, C. Ristoscu, S. M. Petrescu, E. Toksoy Oner, and I. N. Mihailescu (2014) Combinatorial MAPLE gradient thin film assemblies signalling to human osteoblasts. Biofabrication. 6: 035010.

    Article  CAS  Google Scholar 

  21. Sima, F., E. Axente, L. E. Sima, U. Tuyel, M. S. Eroglu, N. Serban, C. Ristoscu, S. M. Petrescu, E. Toksoy Oner, and I. N. Mihailescu (2012) Combinatorial matrix-assisted pulsed laser evaporation: Single-step synthesis of biopolymer compositional gradient thin film assemblies. Appl. Phys. Lett. 101: 233705.

    Article  Google Scholar 

  22. Arora, M., E. K. S. Chan, S. Gupta, and A. D. Diwan (2013) Polymethylmethacrylate bone cements and additives: A review of the literature. World J. Orthop. 4: 67–74.

    Article  Google Scholar 

  23. Wolff, M. F. H., V. Salikov, S. Antonyuk, S. Heinrich, and G. A. Schneider (2014) Novel, highly-filled ceramic-polymer composites synthesized by a spouted bed spray granulation process. Compos. Sci. Technol. 90: 154–159.

    Article  CAS  Google Scholar 

  24. Mehar, A., S. S. Mahapatra, and S. K. Patel (2015) Assessment of mechanical properties and wear behaviour of ceramic composites. Int. J. Eng. Technol. Manage. Appl. Sci. 3: 594–604.

    Google Scholar 

  25. Santos, C., R. L. Clarke, M. Braden, F. Guitian, and K. W. Davy (2002) Water absorption characteristics of dental composites incorporating hydroxyapatite filler. Biomaterials. 23: 1897–1904.

    Article  CAS  Google Scholar 

  26. Tõnsuaadu, K., K. A. Gross, L. Plūduma, and M. Veiderma (2012) A review on the thermal stability of calcium apatites. J. Therm. Anal. Calorim. 110: 647–659.

    Article  Google Scholar 

  27. Anandan, D. and A. K. Jaiswal (2018) Synthesis and characterization of human bone-like hydroxyapatite using Schiff’s base. Ceram. Int. 44: 9401–9407.

    Article  CAS  Google Scholar 

  28. Elashmawi, I. S. and H. E. A. Baieth (2012) Spectroscopic studies of hydroxyapatite in PVP/PVA polymeric matrix as biomaterial. Curr. Appl. Phys. 12: 141–146.

    Article  Google Scholar 

  29. Wei, C. L., M. Chen, and F. E. Yu (2003) Temperature modulated DSC and DSC studies on the origin of double melting peaks in poly(ether ether ketone). Polymer. 44: 8185–8193.

    Article  CAS  Google Scholar 

  30. Kim, G. M. (2010) Fabrication of bio-nanocomposite nanofibers mimicking the mineralized hard tissues via electrospinning process. In: A. Kumar (ed.). Nanofibers. IntechOpen.

Download references

Acknowldgement

This study was supported by the 2018 Yeungnam University Research Grant and by the Human Resources Program in Energy Technology of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Korea (No. 20174030201760).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kye Joo II or Jeong Hyun Seo.

Additional information

Ethical Statements

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Joo, K. & Seo, J.H. Evaluation of Mechanical and Thermal Properties of Hydroxyapatite-levan Composite Bone Graft. Biotechnol Bioproc E 26, 201–207 (2021). https://doi.org/10.1007/s12257-020-0094-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0094-6

Keywords

Navigation