Skip to main content

Advertisement

Log in

Valorization of sugarcane biorefinery residues using fungal biocatalysis

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

A sustainable future requires novel technologies that transform renewable feedstocks into liquid transport fuels, materials, and fine chemicals. Existing sugarcane biorefineries (sugar mills) generate a wide range of renewable feedstocks that can be readily converted into value-added products. Emerging biorefinery technologies offer further expansion of the products that can be generated in sugarcane biorefineries but biocatalysts that can use by-products and residues from these emerging technologies are needed to fully realize the opportunity these technologies represent. Filamentous fungi are versatile biocatalysts that can transform sugarcane biorefinery by-products and residues into a wide range of valuable products. This review provides an overview of sugarcane-based biorefining, existing and emerging processing technologies with application in sugarcane biorefineries; the residues and by-products generated in such a facility; and the opportunities to use filamentous fungi as biocatalysts to produce enzymes, organic acids, single cell protein, specialized metabolites, and animal feed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Clauser NM, Gutierrez S, Area MC, Felissia FE, Vallejos ME (2016) Small-sized biorefineries as strategy to add value to sugarcane bagasse. Chem Eng Res Des 107:137–146. https://doi.org/10.1016/j.cherd.2015.10.050

    Article  Google Scholar 

  2. Badgujar KC, Bhanage BM (2018) Dedicated and waste feedstocks for biorefinery: an approach to develop a sustainable society. In: Bhaskar T, Pandey A, Mohan SV, Lee D, Khanal SK (eds) Waste Biorefinery. Elsevier, Amsterdam, pp 3–38

    Chapter  Google Scholar 

  3. Ajadi T, Boyle R, Strahan D, Kimmel M, Collins B, Cheung A, Becker L (2019) Global trends in renewable energy investment 2019. Frankfurt School-UNEP Centre/BNEF, Frankfurt http://hdl.handle.net/20.500.11822/29752. Accessed February 2021

    Google Scholar 

  4. FAOSTAT statistical database (2016). Publisher: FAO (Food and Agriculture Organization of the United Nations), Rome, Italy. http://faostat.fao.org/. Accessed February 2021

  5. de Oliveira BR, Carvalho JLN, Lal R, de Figueiredo EB, de Oliveira BG, La Scala N (2018) Sustainability of sugarcane production in Brazil. A review. Agron Sustain Dev 38(2):1–23. https://doi.org/10.1007/s13593-018-0490-x

    Article  Google Scholar 

  6. Busic A, Mardetko N, Kundas S, Morzak G, Belskaya H, Ivancic Santek M, Komes D, Novak S, Santek B (2018) Bioethanol production from renewable raw materials and its separation and purification: a review. Food Technol. Biotechnol 56(3):289–311. https://doi.org/10.17113/ftb.56.03.18.5546

    Article  Google Scholar 

  7. Farias D, Maugeri-Filho F (2021) Sequential fed batch extractive fermentation for enhanced bioethanol production using recycled Spathaspora passalidarum and mixed sugar composition. Fuel 288:119673. https://doi.org/10.1016/j.fuel.2020.119673

    Article  Google Scholar 

  8. Santos F, Eichler P, Machado G, De Mattia J and De Souza G (2019) By-products of the sugarcane industry. In: Santos F, Rabelo S, De Matos M, Eichler P (Eds) Sugarcane biorefinery, technology and perspectives. Academic Press, pp 21-48. https://doi.org/10.1016/B978-0-12-814236-3.00002-0

  9. Alcantara GU, Nogueira LC, Stringaci LAQ, Moya SM, Costa GHG (2019) Brazilian “flex mills”: ethanol from sugarcane molasses and corn mash. Bioenerg Res 13(1):229–236. https://doi.org/10.1007/s12155-019-10052-3

    Article  Google Scholar 

  10. Dias MO, Junqueira TL, Cavalett O, Cunha MP, Jesus CD, Rossell CE, Maciel Filho R, Bonomi A (2012) Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresour Technol 103(1):152–161. https://doi.org/10.1016/j.biortech.2011.09.120

    Article  Google Scholar 

  11. Farzad S, Mandegari MA, Guo M, Haigh KF, Shah N, Gorgens JF (2017) Multi-product biorefineries from lignocelluloses: a pathway to revitalisation of the sugar industry? Biotechnol Biofuels 10:87. https://doi.org/10.1186/s13068-017-0761-9

    Article  Google Scholar 

  12. Basit A, Akram MS, Saleem M, Awan JA, Jaubert JN (2017) Characterization and kinetic modeling of the pyrolysis of sugar cane trash. Int J Energy Environ Econ 25(1):43–56

    Google Scholar 

  13. Prabhakar N, Raju DVLN, Vidya SR (2010) Cane trash as fuel. Proceedings of International Society of Sugarcane Technologists 27:11

  14. Roser M (2013) Future population growth. Published online at OurWorldInData.org, Retrieved from: https://ourworldindata.org/future-population-growth. Accessed 15 October 2020

  15. Walker GM, White NA (2017) Introduction to fungal physiology. In: Kavanagh K (ed) Fungi: biology and applications, 3rd edn. Wiley, New York, pp 1–35. https://doi.org/10.1002/9781119374312.ch1

    Chapter  Google Scholar 

  16. Gebbie L, Dam TT, Ainscough R, Palfreyman R, Cao L, Harrison M, O’Hara I, Speight R (2020) A snapshot of microbial diversity and function in an undisturbed sugarcane bagasse pile. BMC Biotechnol 20(1):12. https://doi.org/10.1186/s12896-020-00609-y

    Article  Google Scholar 

  17. Wösten HA (2019) Filamentous fungi for the production of enzymes, chemicals and materials. Curr Opin Biotechnol 59:65–70. https://doi.org/10.1016/j.copbio.2019.02.010

    Article  Google Scholar 

  18. Gusakov AV (2013) Cellulases and hemicellulases in the 21st century race for cellulosic ethanol. Biofuels 4(6):567–569. https://doi.org/10.4155/bfs.13.55

    Article  Google Scholar 

  19. Cosgrove DC, Jarvis MC (2012) Comparative structure and biomechanics of plant primary and secondary cell walls. Front Plant Sci 3:204. https://doi.org/10.3389/fpls.2012.00204

    Article  Google Scholar 

  20. Burton RA, Gidley MJ, Fincher GB (2010) Heterogeneity in the chemistry, structure and function of plant cell walls. Nat Chem Biol 6(10):724–732. https://doi.org/10.1038/nchembio.439

    Article  Google Scholar 

  21. Klemm D, Philpp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry. Volume 1: Fundamentals and analytical methods. Wiley-VCH Verlag GmbH, Weinheim, Germany

  22. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291. https://doi.org/10.1007/s10295-003-0049-x

    Article  Google Scholar 

  23. Hendriks AT, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18. https://doi.org/10.1016/j.biortech.2008.05.027

    Article  Google Scholar 

  24. Laureano-Perez L, Teymouri F, Alizadeh H, Dale BE (2005) Understanding factors that limit enzymatic hydrolysis of biomass: characterization of pretreated corn stover. Appl Biochem Biotechnol 124:1081–1099. https://doi.org/10.1385/abab:124:1-3:1081

    Article  Google Scholar 

  25. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364. https://doi.org/10.1016/j.carbpol.2007.05.040

    Article  Google Scholar 

  26. O’Hara IM, Zhang Z, Doherty WOS, Fellows CM (2011) Lignocellulosics as a renewable feedstock for the chemical industry: chemical hydrolysis and pretreatment processes. In: Sanghi R, Singh V (eds) Green chemistry for environmental remediation. Scrivener Publishing, Salem, pp 505–560

    Google Scholar 

  27. Chandel AK, Antunes FA, Terán-Hilares R, Cota J, Ellilä S, Silveira MH, dos Santos JC, da Silva SS (2018) Bioconversion of hemicellulose into ethanol and value-added products: commercialization, trends, and future opportunities. In: Chandel AK, Silveira MHL (eds) Advances in sugarcane biorefinery. Elsevier, Amsterdam, pp 97–134. https://doi.org/10.1016/B978-0-12-804534-3.00005-7

    Chapter  Google Scholar 

  28. Ramirez JA, Brown R, Rainey TJ (2018) Techno-economic analysis of the thermal liquefaction of sugarcane bagasse in ethanol to produce liquid fuels. Appl Energy 224:184–193. https://doi.org/10.1016/j.apenergy.2018.04.127

    Article  Google Scholar 

  29. Govindasamy G, Sharma R, Subramanian S (2019) Studies on the effect of heterogeneous catalysts on the hydrothermal liquefaction of sugarcane bagasse to low-oxygen-containing bio-oil. Biofuels 10(5):665–675. https://doi.org/10.1080/17597269.2018.1433967

    Article  Google Scholar 

  30. Zhang Z, Zhu M, Hobson P, Doherty W, Zhang D (2018) Contrasting the pyrolysis behavior of selected biomass and the effect of lignin. J Energy Resour Technol 140(6). https://doi.org/10.1115/1.4039321

  31. David GF, Justo OR, Perez VH, Garcia-Perez M (2018) Thermochemical conversion of sugarcane bagasse by fast pyrolysis: High yield of levoglucosan production. J Anal Appl Pyrolysis 133:246–253. https://doi.org/10.1016/j.jaap.2018.03.004

    Article  Google Scholar 

  32. Harrison MD, Zhang Z, Shand K, O'Hara IM, Doherty WO, Dale JL (2013) Effect of pretreatment on saccharification of sugarcane bagasse by complex and simple enzyme mixtures. Bioresour Technol 148:105–113. https://doi.org/10.1016/j.biortech.2013.08.099

    Article  Google Scholar 

  33. Zhang Z, Harrison MD, Rackemann DW, Doherty WOS, O'Hara IM (2016) Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. Green Chem 18(2):360–381. https://doi.org/10.1039/C5GC02034D

    Article  Google Scholar 

  34. Baloch HA, Nizamuddin S, Siddiqui M, Mubarak N, Dumbre DK, Srinivasan M, Griffin G (2018) Sub-supercritical liquefaction of sugarcane bagasse for production of bio-oil and char: effect of two solvents. J Environ Chem Eng 6(5):6589–6601. https://doi.org/10.1016/j.jece.2018.10.017

    Article  Google Scholar 

  35. Paul T, Sinharoy A, Baskaran D, Pakshirajan K, Pugazhenthi G, Lens PN (2020) Bio-oil production from oleaginous microorganisms using hydrothermal liquefaction: a biorefinery approach. Crit Rev Environ Sci Technol:1–39. https://doi.org/10.1080/10643389.2020.1820803

  36. Dhyani V, Bhaskar T (2018) A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energy 129:695–716. https://doi.org/10.1016/j.renene.2017.04.035

    Article  Google Scholar 

  37. Saif AGH, Wahid SS, Ali MR (2020) Pyrolysis of sugarcane bagasse: the effects of process parameters on the product yields. Mater Sci Forum 1008:159–167. https://doi.org/10.4028/www.scientific.net/MSF.1008.159

    Article  Google Scholar 

  38. Kim JE, Lee JW (2019) Microstructural changes in the cell wall and enzyme adsorption properties of lignocellulosic biomass subjected to thermochemical pretreatment. Cellulose 26(2):1111–1124. https://doi.org/10.1007/s10570-018-2116-5

    Article  Google Scholar 

  39. Sabiha-Hanim S, Abd Halim NA (2018) Sugarcane bagasse pretreatment methods for ethanol production. In: Basso TP, Basso LC (eds) Fuel Ethanol Production from sugarcane. IntechOpen, London, pp 63–80. https://doi.org/10.5772/intechopen.81656

    Chapter  Google Scholar 

  40. Santucci BS, Maziero P, Rabelo SC, Curvelo AAS, Pimenta MTB (2015) Autohydrolysis of hemicelluloses from sugarcane bagasse during hydrothermal pretreatment: a kinetic assessment. Bio Energy Res 8(4):1778–1787. https://doi.org/10.1007/s12155-015-9632-z

    Article  Google Scholar 

  41. Miyamoto T, Mihashi A, Yamamura M, Tobimatsu Y, Suzuki S, Takada R, Kobayashi Y, Umezawa T (2018) Comparative analysis of lignin chemical structures of sugarcane bagasse pretreated by alkaline, hydrothermal, and dilute sulfuric acid methods. Ind Crop Prod 121:124–131. https://doi.org/10.1016/j.indcrop.2018.04.077

    Article  Google Scholar 

  42. Cruz S, Dien B, Saha B (2011) Hydrothermal pretreatment of sugarcane bagasse using response surface methodology improves digestibility and ethanol production by SSF. J Ind Microbiol Biotechnol 39:439–447. https://doi.org/10.1007/s10295-011-1051-3

    Article  Google Scholar 

  43. Kucharska K, Rybarczyk P, Hołowacz I, Łukajtis R, Glinka M, Kamiński MJM (2018) Pretreatment of lignocellulosic materials as substrates for fermentation processes. Mol 23(11):2937. https://doi.org/10.3390/molecules23112937

    Article  Google Scholar 

  44. Świątek K, Gaag S, Klier A, Kruse A, Sauer J, Steinbach D (2020) Acid hydrolysis of lignocellulosic biomass: sugars and furfurals formation. Catalysts 10(4):437. https://doi.org/10.3390/catal10040437

    Article  Google Scholar 

  45. Li H, Chen X, Xiong L, Luo M, Chen X, Wang C, Huang C, Chen X (2019) Stepwise enzymatic hydrolysis of alkaline oxidation treated sugarcane bagasse for the co-production of functional xylo-oligosaccharides and fermentable sugars. Bioresour Technol 275:345–351. https://doi.org/10.1016/j.biortech.2018.12.063

    Article  Google Scholar 

  46. Qian X, Nimlos MR, Johnson DK, Himmel ME (2005) Acidic sugar degradation pathways. Appl Biochem Biotechnol 124(1):989–997. https://doi.org/10.1385/ABAB:124:1-3:0989

    Article  Google Scholar 

  47. Gonzales RR, Kumar G, Sivagurunathan P, Kim S-H (2017) Enhancement of hydrogen production by optimization of pH adjustment and separation conditions following dilute acid pretreatment of lignocellulosic biomass. Int J Hydrog Energy 42(45):27502–27511. https://doi.org/10.1016/j.ijhydene.2017.05.021

    Article  Google Scholar 

  48. Kuglarz M, Alvarado-Morales M, Dąbkowska K, Angelidaki I (2018) Integrated production of cellulosic bioethanol and succinic acid from rapeseed straw after dilute-acid pretreatment. Bioresour Technol 265:191–199. https://doi.org/10.1016/j.biortech.2018.05.099

    Article  Google Scholar 

  49. Moodley P, Kana EG (2018) Comparative study of three optimized acid-based pretreatments for sugar recovery from sugarcane leaf waste: a sustainable feedstock for biohydrogen production. Eng Sci Technol Int J 21(1):107–116. https://doi.org/10.1016/j.jestch.2017.11.010

    Article  Google Scholar 

  50. Nair RB, Lundin M, Lennartsson PR, Taherzadeh MJ (2017) Optimizing dilute phosphoric acid pretreatment of wheat straw in the laboratory and in a demonstration plant for ethanol and edible fungal biomass production using Neurospora intermedia. J Chem Technol Biotechnol 92(6):1256–1265. https://doi.org/10.1002/jctb.5119

    Article  Google Scholar 

  51. Niju S, Swathika M, Balajii M (2020) Pretreatment of lignocellulosic sugarcane leaves and tops for bioethanol production. In: Yousuf A, Pirozzi D, Sannino F (eds) Lignocellulosic biomass to liquid biofuels. Elsevier, Amsterdam, pp 301–324. https://doi.org/10.1016/B978-0-12-815936-1.00010-1

    Chapter  Google Scholar 

  52. Xu Z, Huang F (2014) Pretreatment methods for bioethanol production. Appl Biochem Biotechnol 174(1):43–62. https://doi.org/10.1007/s12010-014-1015-y

    Article  Google Scholar 

  53. Taherzadeh-Ghahfarokhi M, Panahi R, Mokhtarani B (2019) Optimizing the combination of conventional carbonaceous additives of culture media to produce lignocellulose-degrading enzymes by Trichoderma reesei in solid state fermentation of agricultural residues. Renew Energy 131:946–955. https://doi.org/10.1016/j.renene.2018.07.130

    Article  Google Scholar 

  54. Ma X, Gao M, Yin Z, Zhu W, Liu S, Wang QJPB (2020) Lactic acid and animal feeds production from Sophora flavescens residues by Rhizopus oryzae fermentation. Process Biochem 92:401–408. https://doi.org/10.1016/j.procbio.2020.01.030

    Article  Google Scholar 

  55. Tapia Carpio LG, Simone de Souza F (2019) Competition between second-generation ethanol and bioelectricity using the residual biomass of sugarcane: effects of uncertainty on the production mix. Mol 24(2). https://doi.org/10.3390/molecules24020369

  56. Harrison MD, Zhang Z, Shand K, Chong BF, Nichols J, Oeller P, O'Hara IM, Doherty WO, Dale JL (2014) The combination of plant-expressed cellobiohydrolase and low dosages of cellulases for the hydrolysis of sugar cane bagasse. Biotechnol Biofuels 7(1):131. https://doi.org/10.1186/s13068-014-0131-9

    Article  Google Scholar 

  57. Rajak RC, Banerjee R (2020) An innovative approach of mixed enzymatic venture for 2G ethanol production from lignocellulosic feedstock. Energy Convers Manag 207:112504. https://doi.org/10.1016/j.enconman.2020.112504

    Article  Google Scholar 

  58. Pereira SC, Maehara L, Machado CM, Farinas CS (2015) 2G ethanol from the whole sugarcane lignocellulosic biomass. Biotechnol Biofuels 8:44. https://doi.org/10.1186/s13068-015-0224-0

    Article  Google Scholar 

  59. Manfredi AP, Ballesteros I, Sáez F, Perotti NI, Martínez MA, Negro MJ (2018) Integral process assessment of sugarcane agricultural crop residues conversion to ethanol. Bioresour Technol 260:241–247. https://doi.org/10.1016/j.biortech.2018.03.114

    Article  Google Scholar 

  60. Meyer V, Andersen MR, Brakhage AA, Braus GH, Caddick MX, Cairns TC, de Vries RP, Haarmann T, Hansen K, Hertz-Fowler CJ, Krappmann S, Mortensen UH, Peñalva MA, Ram AFJ, Head RM (2016) Current challenges of research on filamentous fungi in relation to human welfare and a sustainable bio-economy: a white paper. Fungal Biol Biotechnol 3(1):1–17. https://doi.org/10.1186/s40694-016-0024-8

    Article  Google Scholar 

  61. Troiano D, Orsat V, Dumont MJR (2020) Status of filamentous fungi in integrated biorefineries. Renew Sust Energ Rev 117:109472. https://doi.org/10.1016/j.rser.2019.109472

    Article  Google Scholar 

  62. Srivastava N, Srivastava M, Mishra P, Gupta VK, Molina G, Rodriguez-Couto S, Manikanta A, Ramteke P (2018) Applications of fungal cellulases in biofuel production: advances and limitations. Renew Sust Energ Rev 82:2379–2386. https://doi.org/10.1016/j.rser.2017.08.074

    Article  Google Scholar 

  63. Ahmed A, Bibi A (2018) Fungal cellulase; production and applications: minireview. Int J Health Life Sci 4:19–36. https://doi.org/10.20319/lijhls.2018.41.1936

    Article  Google Scholar 

  64. Sukumaran RK, Christopher M, Kooloth-Valappil P, Sreeja-Raju A, Mathew RM, Sankar M, Puthiyamadam A, Adarsh V-P, Aswathi A, Rebinro V, Abraham A, Pandey A (2021) Addressing challenges in production of cellulases for biomass hydrolysis: targeted interventions into the genetics of cellulase producing fungi. Bioresour Technol 329:124746. https://doi.org/10.1016/j.biortech.2021.124746

    Article  Google Scholar 

  65. Isaksen T, Westereng B, Aachmann FL, Agger JW, Kracher D, Kittl R, Ludwig R, Haltrich D, Eijsink VG, Horn SJ (2014) A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides. J Biol Chem 289(5):2632–2642. https://doi.org/10.1074/jbc.M113.530196

    Article  Google Scholar 

  66. Longe LF, Couvreur J, Leriche Grandchamp M, Garnier G, Allais F, Saito K (2018) Importance of mediators for lignin degradation by fungal laccase. ACS Sustain Chem Eng 6(8):10097–10107. https://doi.org/10.1021/acssuschemeng.8b01426

    Article  Google Scholar 

  67. Ferreira FL, Dall'Antonia CB, Shiga EA, Alvim LJ, Pessoni RAB (2018) Sugarcane bagasse as a source of carbon for enzyme production by filamentous fungi. Hoehnea 45(1):134–142. https://doi.org/10.1590/2236-8906-40/2017

    Article  Google Scholar 

  68. Abdullah A, Hamid H, Christwardana M, Hadiyanto H (2018) Optimization of cellulase production by Aspergillus niger ITBCC L74 with bagasse as substrate using response surface methodology. HAYATI J Biosci 25(3):115. https://doi.org/10.4308/hjb.25.3.115

    Article  Google Scholar 

  69. Bhardwaj N, Chanda K, Kumar B, Prasad HK, Sharma GD, Verma P (2017) Statistical optimization of nutritional and physical parameters for xylanase production from newly isolated Aspergillus oryzae LC1 and its application in the hydrolysis of lignocellulosic agro-residues. BioResources 12(4):8519–8538

    Google Scholar 

  70. Jiménez-Quero A, Pollet E, Avérous L, Phalip V (2020) Optimized bioproduction of itaconic and fumaric acids based on solid-state fermentation of lignocellulosic biomass. Mol 25(5):1070. https://doi.org/10.3390/molecules25051070

    Article  Google Scholar 

  71. Sher H, Faheem M, Ghani A, Mehmood R, Rehman H, Bokhari SA (2017) Optimization of cellulase enzyme production from Aspergillus oryzae for industrial applications. World J Biol Biotechnol 2(2):155–158. https://doi.org/10.33865/wjb.002.02.0088

    Article  Google Scholar 

  72. Arntzen MO, Bengtsson O, Varnai A, Delogu F, Mathiesen G, Eijsink VGH (2020) Quantitative comparison of the biomass-degrading enzyme repertoires of five filamentous fungi. Sci Rep 10(1):20267. https://doi.org/10.1038/s41598-020-75217-z

    Article  Google Scholar 

  73. Gao W, Lei Z, Tabil LG, Zhao R (2020) Biological pretreatment by solid-state fermentation of oat straw to enhance physical quality of pellets. J Chem vol 2020:1–13. https://doi.org/10.1155/2020/3060475

    Article  Google Scholar 

  74. Ezeilo UR, Wahab RA, Mahat NA (2020) Optimization studies on cellulase and xylanase production by Rhizopus oryzae UC2 using raw oil palm frond leaves as substrate under solid state fermentation. Renew Energy 156:1301–1312. https://doi.org/10.1016/j.renene.2019.11.149

    Article  Google Scholar 

  75. Dey P, Singh J, Scaria J, Anand AP (2018) Improved production of cellulase by Trichoderma reesei (MTCC 164) from coconut mesocarp-based lignocellulosic wastes under response surface-optimized condition. Biotech 8(9):402. https://doi.org/10.1007/s13205-018-1421-x

    Article  Google Scholar 

  76. Volpi MPC, Santos VS, Ribeiro APB, Santana MHA, Bastos RG (2019) The role of lignocellulosic composition and residual lipids in empty fruit bunches on the production of humic acids in submerged fermentations. Appl Biochem Biotechnol 187(3):957–964. https://doi.org/10.1007/s12010-018-2850-z

    Article  Google Scholar 

  77. Frassatto PAC, Casciatori FP, Thoméo JC, Gomes E, Boscolo M, da Silva R (2021) β-Glucosidase production by Trichoderma reesei and Thermoascus aurantiacus by solid state cultivation and application of enzymatic cocktail for saccharification of sugarcane bagasse. Biomass Conv. Bioref 11:503–513. https://doi.org/10.1007/s13399-020-00608-1

  78. Rahnama N, Shah UKM, Foo HL, Rahman NAA, Ariff AB (2016) Production and characterisation of cellulase from solid state fermentation of rice straw by Trichoderma harzianum SNRS3. Trop Agric Sci 39(4):515–539

    Google Scholar 

  79. Zaki M, Said SD (2018) Trichoderma reesei single cell protein production from rice straw pulp in solid state fermentation. In: IOP Conference Series: Materials science and engineering vol 345, no 1, p 012043. https://doi.org/10.1088/1757-899X/345/1/012043

  80. Conesa C, Seguí L, Fito P (2018) Hydrolytic performance of Aspergillus niger and Trichoderma reesei cellulases on lignocellulosic industrial pineapple waste intended for bioethanol production. Waste Biomass Valor 9(8):1359–1368. https://doi.org/10.1007/s12649-017-9887-z

    Article  Google Scholar 

  81. Fatma S, Saleem A, Tabassum R (2020) Wheat straw hydrolysis by using co-cultures of Trichoderma reesei and Monascus purpureus toward enhanced biodegradation of the lignocellulosic biomass in bioethanol biorefinery. Biomass Conv Bioref 1-12. doi:https://doi.org/10.1007/s13399-020-00652-x

  82. Idris ASO, Pandey A, Rao S, Sukumaran RK (2017) Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum stover. Bioresour Technol 242:265–271. https://doi.org/10.1016/j.biortech.2017.03.092

    Article  Google Scholar 

  83. Siwarasak P (2017) Crude cellulase powder production by solid-state fermentation using cassava residue and co-cultured microorganisms Trichoderma reesei and Saccharomyces cerevisiae. Res J Rajamangala Uni Technol Thanyaburi 15(2):38–44

    Google Scholar 

  84. Zhao X, Yi S, Li H (2019) The optimized co-cultivation system of Penicillium oxalicum 16 and Trichoderma reesei RUT-C30 achieved a high yield of hydrolase applied in second-generation bioethanol production. Renew Energy 136:1028–1035. https://doi.org/10.1016/j.renene.2019.01.066

    Article  Google Scholar 

  85. Maehara L, Pereira SC, Silva AJ, Farinas CS (2018) One-pot strategy for on-site enzyme production, biomass hydrolysis, and ethanol production using the whole solid-state fermentation medium of mixed filamentous fungi. Biotechnol Prog 34(3):671–680. https://doi.org/10.1002/btpr.2619

    Article  Google Scholar 

  86. Ghosh B, Ray RR (2011) Current commercial perspective of Rhizopus oryzae: a review. J Appl Sci 11(14):2470–2486. https://doi.org/10.3923/jas.2011

    Article  Google Scholar 

  87. JCM W-R, Endika MF, Smid EJ (2018) Enhancing vitamin B12 in lupin tempeh by in situ fortification. LWT 96:513–518. https://doi.org/10.1016/j.lwt.2018.05.062

    Article  Google Scholar 

  88. Zheng YX, Wang YL, Pan J, Zhang JR, Dai Y, Chen KY (2017) Semi-continuous production of high-activity pectinases by immobilized Rhizopus oryzae using tobacco wastewater as substrate and their utilization in the hydrolysis of pectin-containing lignocellulosic biomass at high solid content. Bioresour Technol 241:1138–1144. https://doi.org/10.1016/j.biortech.2017.06.066

    Article  Google Scholar 

  89. Seo HS, Lee S, Singh D, Shin HW, Cho SA, Lee CH (2018) Untargeted metabolite profiling for koji-fermentative bioprocess unravels the effects of varying substrate types and microbial inocula. Food Chem 266:161–169. https://doi.org/10.1016/j.foodchem.2018.05.048

    Article  Google Scholar 

  90. Arnau J, Yaver D, Hjort CM (2020) Strategies and challenges for the development of industrial enzymes using fungal cell factories. In: Nevalainen H (ed) Grand challenges in fungal biotechnology. Springer, New York, pp 179–210. https://doi.org/10.1007/978-3-030-29541-7_7

    Chapter  Google Scholar 

  91. Shinkawa S, Mitsuzawa S (2020) Feasibility study of on-site solid-state enzyme production by Aspergillus oryzae. Biotechnol Biofuels 13(1):1–15. https://doi.org/10.1186/s13068-020-1669-3

    Article  Google Scholar 

  92. Melnichuk N, Braia MJ, Anselmi PA, Meini M-R, Romanini D (2020) Valorization of two agroindustrial wastes to produce alpha-amylase enzyme from Aspergillus oryzae by solid-state fermentation. Waste Manag 106:155–161. https://doi.org/10.1016/j.wasman.2020.03.025

    Article  Google Scholar 

  93. Mahboubi A, Ferreira JA, Taherzadeh MJ, Lennartsson PR (2017) Production of fungal biomass for feed, fatty acids, and glycerol by Aspergillus oryzae from fat-rich dairy substrates. Ferment 3(4):48. https://doi.org/10.3390/fermentation3040048

    Article  Google Scholar 

  94. Greenwood A, Farrell T, O'Hara I (2016) Mathematical modeling of xylose production from hydrolysis of sugarcane bagasse. In: O'Hara I, Mundree S (eds) Sugarcane-based biofuels and bioproducts. John Wiley and Sons, United States of America, pp 137–164. https://doi.org/10.1002/9781118719862.ch6

    Chapter  Google Scholar 

  95. Pinotti LM, Paulino LB, Agnezi JC, dos Santos PA, da Silva HNL, Zavarise JP, Salomão GSB, Tardioli PW (2020) Evaluation of different fungi and bacteria strains for production of cellulases by submerged fermentation using sugarcane bagasse as carbon source: effect of substrate concentration and cultivation temperature. Afr J Biotechnol 19(9):625–635. https://doi.org/10.5897/AJB2020.17210

    Article  Google Scholar 

  96. de Oliveira Ornela PH, Souza Guimarães LH (2019) Purification and characterization of an alkalistable phytase produced by Rhizopus microsporus var. microsporus in submerged fermentation. Process Biochem 81:70–76. https://doi.org/10.1016/j.procbio.2019.03.015

    Article  Google Scholar 

  97. Khatun MS, Harrison MD, Speight RE, O’Hara IM, Zhang Z (2020) Efficient production of fructo-oligosaccharides from sucrose and molasses by a novel Aureobasidium pullulan strain. Biochem Eng J 163:107747. https://doi.org/10.1016/j.bej.2020.107747

    Article  Google Scholar 

  98. Rainey T, Doherty W, Martinez M, Brown R, Kelson N (2009) An experimental study of Australian sugarcane bagasse pulp permeability. Appita: Technol Innov Manuf Env 62(4):296–302

    Google Scholar 

  99. Kumar D, Jain VK, Shanker G, Srivastava A (2003) Citric acid production by solid state fermentation using sugarcane bagasse. Process Biochem 38(12):1731–1738. https://doi.org/10.1016/S0032-9592(02)00252-2

    Article  Google Scholar 

  100. Fang X, Qu Y (2018) Fungal cellulolytic enzymes: microbial production and application. Springer, Singapore. https://doi.org/10.1007/978-981-13-0749-2

  101. Salomão GSB, Agnezi JC, Paulino LB, Hencker LB, de Lira TS, Tardioli PW, Pinotti LM (2019) Production of cellulases by solid state fermentation using natural and pretreated sugarcane bagasse with different fungi. Biocatal Agric Biotechnol 17:1–6. https://doi.org/10.1016/j.bcab.2018.10.019

    Article  Google Scholar 

  102. Jain L, Agrawal D (2018) Performance evaluation of fungal cellulases with dilute acid pretreated sugarcane bagasse: a robust bioprospecting strategy for biofuel enzymes. Renew Energy 115:978–988. https://doi.org/10.1016/j.renene.2017.09.021

    Article  Google Scholar 

  103. Marques NP, de Cassia PJ, Gomes E, da Silva R, Araújo AR, Ferreira H, Rodrigues A, Dussán KJ, Bocchini DA (2018) Cellulases and xylanases production by endophytic fungi by solid state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse. Ind Crop Prod 122:66–75. https://doi.org/10.1016/j.indcrop.2018.05.022

    Article  Google Scholar 

  104. Ahmad FB, Zhang Z, Doherty WO, O'Hara IM (2016) Microbial oil production from sugarcane bagasse hydrolysates by oleaginous yeast and filamentous fungi. In: Proceedings of the 38th Annual Conference of the Australian Society of Sugar Cane Technologists. Australian Society of Sugar Cane Technologists-ASSCT, pp 251-259

  105. Scarcella ASd, Pasin TM, de Lucas RC, et al (2021) Holocellulase production by filamentous fungi: potential in the hydrolysis of energy cane and other sugarcane varieties. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-01304-4

  106. Porro D, Branduardi P (2017) Production of organic acids by yeasts and filamentous fungi. In: Sibirny AA (ed) Biotechnology of yeasts and filamentous fungi. Springer, Cham, pp 205–223. https://doi.org/10.1007/978-3-319-58829-2_7

    Chapter  Google Scholar 

  107. Vishnu D, Dhandapani B, Mahadevan S (2020) Recent advances in organic acid production from microbial sources by utilizing agricultural by-products as substrates for industrial applications. In: Jerold M, Arockiasamy S, Sivasubramanian V (eds) Bioprocess engineering for bioremediation. The Handbook of Environmental Chemistry, vol 104. Springer, Cham. https://doi.org/10.1007/698_2020_577

    Chapter  Google Scholar 

  108. Hu W, Li WJ, Yang HQ, Chen JH (2019) Current strategies and future prospects for enhancing microbial production of citric acid. Appl Microbiol Biotechnol 103(1):201–209. https://doi.org/10.1007/s00253-018-9491-6

    Article  Google Scholar 

  109. Dezam APG, Vasconcellos VM, Lacava PT, Farinas CS (2017) Microbial production of organic acids by endophytic fungi. Biocatal Agric Biotechnol 11:282–287. https://doi.org/10.1016/j.bcab.2017.08.001

    Article  Google Scholar 

  110. Hou L, Liu L, Zhang H, Zhang L, Zhang L, Zhang J, Gao Q, Wang D (2018) Functional analysis of the mitochondrial alternative oxidase gene (aox1) from Aspergillus niger CGMCC 10142 and its effects on citric acid production. Appl Microbiol Biotechnol 102(18):7981–7995. https://doi.org/10.1007/s00253-018-9197-9

    Article  Google Scholar 

  111. Özcelik S, Kuley E, Özogul FJL (2016) Formation of lactic, acetic, succinic, propionic, formic and butyric acid by lactic acid bacteria. LWT 73:536–542. https://doi.org/10.1016/j.lwt.2016.06.066

    Article  Google Scholar 

  112. Campanhol BS, Silveira GC, Castro MC, Ceccato-Antonini SR, Bastos RG (2019) Effect of the nutrient solution in the microbial production of citric acid from sugarcane bagasse and vinasse. Biocatal Agric Biotechnol 19:101147. https://doi.org/10.1016/j.bcab.2019.101147

    Article  Google Scholar 

  113. Leh DS, Biz A, de Paula DHF, Richard P, Gonçalves AG, Noseda MD, Mitchell DA, Krieger N (2017) Conversion of citric pectin into D-galacturonic acid with high substrate loading using a fermented solid with pectinolytic activity. Biocatal Agric Biotechnol 11:214–219. https://doi.org/10.1016/j.bcab.2017.07.003

    Article  Google Scholar 

  114. Chen P, Tao S, Zheng P (2016) Efficient and repeated production of succinic acid by turning sugarcane bagasse into sugar and support. Bioresour Technol 211:406–413. https://doi.org/10.1016/j.biortech.2016.03.108

    Article  Google Scholar 

  115. Aita G, Deng F (2020) Bagasse as a source for fumaric acid production. Int Sugar J 122(1453):34–39

    Google Scholar 

  116. Abraham A, Moideen SK, Mathew AK, AR SR, Sindhu R, Pandey A, Sang BI, Sukumaran RK (2020) Fumaric acid production from sugarcane trash hydrolysate using Rhizopus oryzae NIIST 1. Indian J Exp Biol 58(08):548–556

    Google Scholar 

  117. Bastos RG, Ribeiro HC (2020) Citric acid production by the solid-state cultivation consortium of Aspergillus niger and Trichoderma reesei from sugarcane bagasse. Open Biotechnol J 14:32–41. https://doi.org/10.2174/1874070702014010032

    Article  Google Scholar 

  118. Mosunova O, Navarro-Muñoz JC, Collemare J (2020) The biosynthesis of fungal secondary metabolites: from fundamentals to biotechnological applications,reference module in life sciences. Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.21072-8

  119. Keller NP (2019) Fungal secondary metabolism: regulation, function and drug discovery. Nat Rev Microbiol 17(3):167–180. https://doi.org/10.1038/s41579-018-0121-1

    Article  Google Scholar 

  120. Son SY, Lee S, Singh D, Lee NR, Lee DY, Lee CH (2018) Comprehensive secondary metabolite profiling toward delineating the solid and submerged-state fermentation of Aspergillus oryzae KCCM 12698. Front Microbiol 9:1076. https://doi.org/10.3389/fmicb.2018.01076

    Article  Google Scholar 

  121. Karlovsky P, Suman M, Berthiller F, De Meester J, Eisenbrand G, Perrin I, Oswald IP, Speijers G, Chiodini A, Recker T, Dussort P (2016) Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res 32(4):179–205. https://doi.org/10.1007/s12550-016-0257-7

    Article  Google Scholar 

  122. Upadhyayula RS, Solanki PS, Suravajhala P, Medicherla KM (2019) Bioinformatics tools for microbial diversity analysis. In: Satyanarayana T, Johri B, Das S (eds) Microbial diversity in ecosystem sustainability and biotechnological applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-8315-1_2

    Chapter  Google Scholar 

  123. Romero-Rodríguez A, Maldonado-Carmona N, Ruiz-Villafán B, Koirala N, Rocha D, Sánchez S (2018) Interplay between carbon, nitrogen and phosphate utilization in the control of secondary metabolite production in Streptomyces. Antonie Van Leeuwenhoek 111:1–21. https://doi.org/10.1007/s10482-018-1073-1

    Article  Google Scholar 

  124. Chandel AK, da Silva SS, Carvalho W, Singh OV (2012) Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products. J Chem Technol Biotechnol 87(1):11–20. https://doi.org/10.1002/jctb.2742

    Article  Google Scholar 

  125. Gil-Serna J, García-Díaz M, Vázquez C, González-Jaén MT, Patiño B (2019) Significance of Aspergillus niger aggregate species as contaminants of food products in Spain regarding their occurrence and their ability to produce mycotoxins. Food Microbiol 82:240–248. https://doi.org/10.1016/j.fm.2019.02.013

    Article  Google Scholar 

  126. Boruta T (2018) Uncovering the repertoire of fungal secondary metabolites: From Fleming’s laboratory to the International Space Station. Bioengineered 9(1):12–16. https://doi.org/10.1080/21655979.2017.1341022

    Article  Google Scholar 

  127. Nieto IJ, Chegwin AC (2013) The effect of different substrates on triterpenoids and fatty acids in fungi of the genus Pleurotus. J Chil Chem Soc 58(1):1580–1583. https://doi.org/10.4067/S0717-97072013000100017

    Article  Google Scholar 

  128. Hilares RT, de Souza RA, Marcelino PF, da Silva SS, Dragone G, Mussatto SI, Santos JC (2018) Sugarcane bagasse hydrolysate as a potential feedstock for red pigment production by Monascus ruber. Food Chem 245:786–791. https://doi.org/10.1016/j.foodchem.2017.11.111

    Article  Google Scholar 

  129. Vadlapudi V, Borah N, Yellusani KR, Gade S, Reddy P, Rajamanikyam M, Vempati LNS, Gubbala SP, Chopra P, Upadhyayula SM, Amanchy R (2017) Aspergillus secondary metabolite database, a resource to understand the secondary metabolome of Aspergillus genus. Sci Rep 7(1):7325. https://doi.org/10.1038/s41598-017-07436-w

    Article  Google Scholar 

  130. Goyal S, Ramawat KG, Mérillon J-M (2017) Different shades of fungal metabolites: an overview. In: Mérillon J-M, Ramawat KG (eds) Fungal metabolites. Springer International Publishing, Cham, pp 1–29. https://doi.org/10.1007/978-3-319-25001-4_34

    Chapter  Google Scholar 

  131. Pandey AK, Kumar P, Saxena MJ (2019) Feed additives in animal health. In: Nutraceuticals in veterinary medicine. Springer, Cham, pp 345–362. https://doi.org/10.1007/978-3-030-04624-8_23

    Chapter  Google Scholar 

  132. Falls M, Meysing D, Lonkar S, Liang C, Karim MN, Carstens G, Tedeschi LO, Holtzapple MT (2017) Development of highly digestible animal feed from lignocellulosic biomass Part 1: Oxidative lime pretreatment (OLP) and ball milling of forage sorghum. Transl Anim Sci 1(2):208–214. https://doi.org/10.2527/tas2017.0024

    Article  Google Scholar 

  133. Singh AK, Prajapati KS, Shuaib M, Kushwaha PP, Kumar S (2020) Microbial proteins: a potential source of protein. In: Egbuna C, Tupas GD (eds) Functional foods and nutraceuticals. Springer, Cham, pp 139–147. https://doi.org/10.1007/978-3-030-42319-3_8

    Chapter  Google Scholar 

  134. Pikaar I, Matassa S, Bodirsky BL, Weindl I, Humpenöder F, Rabaey K, Boon N, Bruschi M, Yuan Z, van Zanten H, Herrero M, Verstraete W, Popp A (2018) Decoupling livestock from land use through industrial feed production pathways. Environ Sci Technol 52(13):7351–7359. https://doi.org/10.1021/acs.est.8b00216

    Article  Google Scholar 

  135. Matassa S, Boon N, Pikaar I, Verstraete W (2016) Microbial protein: future sustainable food supply route with low environmental footprint. Microb Biotechnol 9(5):568–575. https://doi.org/10.1111/1751-7915.12369

    Article  Google Scholar 

  136. Ritala A, Häkkinen ST, Toivari M, Wiebe MG (2017) Single cell protein - state-of-the-art, industrial landscape and patents 2001-2016. Front Microbiol 8:2009. https://doi.org/10.3389/fmicb.2017.02009

    Article  Google Scholar 

  137. Bajpai P (2017) Nutritional benefits of single-cell proteins. In: Sharma SK (ed) Single cell protein production from lignocellulosic biomass. Springer, Singapore, pp 59–64. https://doi.org/10.1007/978-981-10-5873-8

    Chapter  Google Scholar 

  138. Jin B, Van Leeuwen H, Patel B, Yu Q (1998) Utilisation of starch processing wastewater for production of microbial biomass protein and fungal α-amylase by Aspergillus oryzae. Bioresour Technol 66(3):201–206. https://doi.org/10.1016/S0960-8524(98)00060-1

    Article  Google Scholar 

  139. Nigam JN (2000) Cultivation of Candida langeronii in sugar cane bagasse hemicellulosic hydrolyzate for the production of single cell protein. World J Microbiol Biotechnol 16(4):367–372. https://doi.org/10.1023/A:1008922806215

    Article  Google Scholar 

  140. Ferreira OE, Montijo NA, da Silva ME, Mutton MJR (2015) Production of α-amylase by solid state fermentation by Rhizopus oryzae. Afr J Biotechnol 14(7):622–628. https://doi.org/10.5897/AJB2014.14296

    Article  Google Scholar 

  141. Souza Filho PF, Zamani A, Taherzadeh MJ (2019) Edible protein production by filamentous fungi using starch plant wastewater. Waste Biomass Valoriz 10(9):2487–2496. https://doi.org/10.1007/s12649-018-0265-2

    Article  Google Scholar 

  142. Karimi S, Mahboobi Soofiani N, Lundh T, Mahboubi A, Kiessling A, Taherzadeh MJ (2019) Evaluation of filamentous fungal biomass cultivated on vinasse as an alternative nutrient source of fish feed: protein, lipid, and mineral composition. Ferment 5(4):99. https://doi.org/10.3390/fermentation5040099

    Article  Google Scholar 

  143. Zadrazil F, Puniya AK (1995) Studies on the effect of particle size on solid-state fermentation of sugarcane bagasse into animal feed using white-rot fungi. Bioresour Technol 54(1):85–87. https://doi.org/10.1016/0960-8524(95)00119-0

    Article  Google Scholar 

  144. Singh P, Yadav SK (2018) Feed enzymes: source and applications. In: Kuddus M (ed) Enzymes in food technology. Springer, Singapore, pp 347–358. https://doi.org/10.1007/978-981-13-1933-4_17

    Chapter  Google Scholar 

  145. Thammiah V, Samanta A, Senani S, Sridhar M (2017) Scope of exogenous enzymes in enhancing ruminant productivity. J Dairy Vet Anim Res 5(2):00137. https://doi.org/10.15406/jdvar.2017.05.00137

    Article  Google Scholar 

  146. Rode LM, McAllister TA, Beauchemin KA, Morgavi DP, Nsereko VL, Yang WZ, Iwaasa AD, Wang Y (2001) Enzymes as direct-feed additives for ruminants. In: Renaville R, Burny A (eds) Biotechnology in animal husbandry. Kluwer Academic Publishers, Netherlands, pp 301–332

    Google Scholar 

Download references

Funding

The authors are supported by Sugar Research Australia through funding from the Australian Government Department of Agriculture, Water, and the Environment as part of its Rural R&D for Profit program and the partners.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Harrison.

Ethics declarations

Consent for publication

All authors provide their consent for publication of this manuscript.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amini, Z., Self, R., Strong, J. et al. Valorization of sugarcane biorefinery residues using fungal biocatalysis. Biomass Conv. Bioref. 12, 997–1011 (2022). https://doi.org/10.1007/s13399-021-01456-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01456-3

Keywords

Navigation